Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Malignant network makes brain cancer resistant

No. 51 | 09/11/2015 | by Koh

Glioblastoma is the most malignant type of brain cancer. Physicians and scientists from the German Cancer Research Center (DKFZ) and from Heidelberg University Hospital have now reported in “Nature” that glioblastoma cells are connected to each other by long cellular extensions. The cancer cells use this network for communication, thus protecting themselves from damage inflicted by therapy. When the researchers blocked the network formation, the cancer cells invaded the brain less successfully, and responded better to radiation therapy.

3D-Illustration of a glioblastoma: Interconnected tumor cells (blue) with the connecting microtubes (pink). Tumor cells and microtubes outside the network are grey
© Nature

Incurable astrocytomas, including the particularly malignant glioblastomas, diffusively grow like mycelium into healthy brain tissue. Therefore, these tumors cannot be completely removed by surgery and invariably start growing again at some point despite intensive treatment. They appear to have effective resistance mechanisms.

In their latest publication, scientists co-working with Frank Winkler from the Clinical Cooperation Unit (CCU) “Neurooncology” of the DKFZ and Heidelberg University Hospital, describe a striking feature of astrocytoma cells: They form extremely thin and long extensions of their cellular membrane, which they use to constantly scan the healthy brain, thus invading and colonizing it.  As the tumor grows, the cancer cells use these extensions to interconnect to a large network where they communicate intensively and via long distances, making astrocytomas appear like highly complex, organ-like entities. “Our first thought was: this looks like the formation of a new brain within the existing one,” Winkler said. “The tumor cells were interconnected in a network that resembles the ones we know of neurons and other cell types in the brain.”

For up to one year, the researchers observed the growth of human glioblastoma cells that they had transferred to mice. They used a special microscopy technique that facilitates insights into the brain’s deep zones. In this way, they discovered that the cancer cells exchanged molecules via their membrane microtubes which they also used as communication channels.

The investigators also found this network of tumor microtubes in tissue samples from brain cancer patients. The more the cancer cells were interconnected, the more malignant and resistant the tumor subtype was.

The scientists therefore hypothesized that the tumor microtube networks must be linked to therapy resistance. They observed that the tumors in fact recognize damage to the network and repair it immediately. Radiation therapy – the standard treatment in glioblastoma – fails to kill mainly the tumor cells that are part of the network, whereas cancer cells outside the network die.

How do the tumor cells form these extraordinary membrane extensions? An analysis of the gene activities in tumor tissue from 250 brain cancer patients provided a clue. For building their network, the cancer cells make use of specific molecular signaling pathways that are normally active during early development of the nervous system. Experiments in which the scientists blocked these pathways in mice showed that the animals subsequently developed smaller tumors with fewer interconnections that responded very sensitively to radiotherapy.

“The resistance of astrocytomas, particularly glioblastomas, against all types of therapy is an enormous problem,” says Wolfgang Wick, who heads the CCU as well as the Neurology Department of Heidelberg University Hospital. “For the first time, our results show a long sought-after new approach toward breaking this resistance and thus enabling us eventually to enhance the treatment efficacies of these tumors. The results also explain why a specific subtype of brain cancer responds much better to therapy. Their capability of building networks seems to be limited.” Matthias Osswald, the article’s first author, adds: “Even though this discovery does not immediately enable us to offer a new treatment to our brain tumor patients, it does show the direction that therapy development should take: we have to destroy the malignant network.”

Matthias Osswald, Erik Jung, Felix Sahm, Gergely Solecki, Varun Venkataramani, Jonas Blaes, Sophie Weil, Heinz Horstmann, Benedikt Wiestler, Mustafa Syed, Lulu Huang, Miriam Ratliff, Kianush Karimian Jazi, Felix T. Kurz, Torsten Schmenger, Dieter Lemke, Miriam Gömmel, Martin Pauli, Yunxiang Liao, Peter Häring, Stefan Pusch, Verena Herl, Christian Steinhäuser, Damir Krunic, Mostafa Jarahian, Hrvoje Miletic, Anna S. Berghoff, Oliver Griesbeck, Georgios Kalamakis, Olga Garaschuk, Matthias Preusser, Samuel Weiss, Haikun Liu, Sabine Heiland, Michael Platten, Peter E. Huber, Thomas Kuner, Andreas von Deimling, Wolfgang Wick und Frank Winkler: Brain tumor cells interconnect to a functional and resistant network. Nature 2015, DOI: 10.1038/nature16071

Link to Nature “News and Views”: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature15649.html

A picture is available at:
http://www.dkfz.de/de/presse/pressemitteilungen/2015/bilder/vernetztes-Glioblastom.jpg

Caption: 3D-Illustration of a glioblastoma: Interconnected tumor cells (blue) with the connecting microtubes (pink). Tumor cells and microtubes outside the network are grey (Source: Nature).

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS