Research
- Research Topics
- Cell Biology and Tumor Biology
- Stem Cells and Cancer
- Inflammatory Stress in Stem Cells
- Experimental Hematology
- Molecular Embryology
- Signal Transduction and Growth Control
- Epigenetics
- Redox Regulation
- Vascular Oncology and Metastasis
- Clinical Neurobiology
- Molecular Neurogenetics
- Molecular Neurobiology
- Mechanisms Regulating Gene Expression
- Molecular Biology of Centrosomes and Cilia
- Dermato-Oncology
- Pediatric Leukemia
- Tumour Metabolism and Microenvironment
- Personalized Medical Oncology
- Molecular Hematology - Oncology
- Cancer Progression and Metastasis
- Translational Surgical Oncology
- Neuronal Signaling and Morphogenesis
- Cell Signaling and Metabolism
- Cell Fate Engineering and Disease Modeling
- Cancer Drug Development
- Cell Morphogenesis and Signal Transduction
- Functional and Structural Genomics
- Molecular Genome Analysis
- Molecular Genetics
- Pediatric Neurooncology
- Cancer Genome Research
- Chromatin Networks
- Functional Genome Analysis
- Theoretical Systems Biology
- Neuroblastoma Genomics
- Signaling and Functional Genomics
- Signal Transduction in Cancer and Metabolism
- RNA-Protein Complexes and Cell Proliferation
- Systems Biology of Signal Transduction
- Areas of Interest
- Advancement of clinical proteomics for systems medicine
- Bridging from the single cell to the cell population – Epo-induced cellular responses and erythroleukemia
- Deciphering tumor microenvironment interactions determining lung cancer development
- Mechanisms controlling the compensation of liver injury and towards model-based biomarkers for early detection of liver cancer
- Application of dynamic pathway modelling for personalized medicine
- Group Members
- Publications
- Open Positions
- Funding
- Teaching
- Areas of Interest
- Molecular thoracic Oncology
- Proteomics of Stem Cells and Cancer
- Computational Genomics and System Genetics
- Applied Functional Genomics
- Applied Bioinformatics
- Translational Medical Oncology
- Metabolic crosstalk in cancer
- Pediatric Glioma Research
- Cancer Epigenomics
- Translational Pediatric Sarcoma Research
- Artificial Intelligence in Oncology
- Mechanisms of Genomic Variation and Data Science
- Neuropathology
- Pediatric Oncology
- Neurooncology
- Somatic Evolution and Early Detection
- Translational Control and Metabolism
- Soft-Tissue Sarcoma
- Precision Sarcoma Research
- Brain Mosaicism and Tumorigenesis
- Mechanisms of Genome Control
- Translational Gastrointestinal Oncology and Preclinical Models
- Translational Lymphoma Research
- Mechanisms of Leukemogenesis
- Genome Instability in Tumors
- Developmental Origins of Pediatric Cancer
- Brain Tumor Translational Targets
- Translational Functional Cancer Genomics
- Regulatory Genomics and Cancer Evolution
- SPRINT
- Cancer Risk Factors and Prevention
- Cancer Epidemiology
- Biostatistics
- Clinical Epidemiology and Aging Research
- Health Economics
- Physical Activity, Prevention and Cancer
- Primary Cancer Prevention
- Personalized Early Detection of Prostate Cancer
- Digital prevention, diagnostics and therapy guidance
- Policy and Implementation Research for Cancer Prevention
- Tumorigenesis and molecular cancer prevention
- Genomic Epidemiology
- Cancer Survivorship
- Immunology, Infection and Cancer
- Structural Biology of Infection and Immunity
- Cellular Immunology
- B Cell Immunology
- Immune Diversity
- Immunoproteomics
- Personalized Immunotherapy
- mRNA Cancer Immunotherapies
- Tumor Immunology and Tumor Immunotherapy
- Infections and Cancer Epidemiology
- Pathogenesis of Virus-Associated Tumors
- Immunotherapy and Immunoprevention
- Virus-associated Carcinogenesis
- Chronic Inflammation and Cancer
- Microbiome and Cancer
- Molecular Oncology of Gastrointestinal Tumors
- Applied Tumor Immunity
- Neuroimmunology and Brain Tumor Immunology
- Applied Tumor Biology
- Virotherapy
- Adaptive Immunity and Lymphoma
- Dermal Oncoimmunology
- Immune Regulation in Cancer
- Systems Immunology and Single Cell Biology
- Pediatric Immuno-Oncology
- Epithelium Microbiome lnteractions
- Experimental Hepatology, Inflammation and Cancer
- GMP & T Cell Therapy
- Tumorvirus-specific Vaccination Strategies
- Mammalian Cell Cycle Control Mechanisms
- Molecular Therapy of Virus-Associated Cancers
- DNA Vectors
- Episomal-Persistent DNA in Cancer- and Chronic Diseases
- Immune Monitoring
- News
- Imaging and Radiooncology
- Radiology
- Research
- Computational Radiology Research Group
- Contrast Agents In Radiology Research Group
- Neuro-Oncologic Imaging Research Group
- Radiological Early Response Assessment Of Modern Cancer Therapies
- Imaging In Monoclonal Plasma Cell Disorders
- 7 Tesla MRI - Novel Imaging Biomarkers
- Functional Imaging
- Visualization And Forensic Imaging
- PET/MRI
- Dual- and Multienergy CT
- Radiomics Research Group
- Prostate Research Group
- Bone marrow
- Musculoskeletal Imaging
- Microstructural Imaging Research Group
- Staff
- Patients
- Research
- Medical Physics in Radiology
- X-Ray Imaging and Computed Tomography
- Federated Information Systems
- Translational Molecular Imaging
- Medical Physics in Radiation Oncology
- Biomedical Physics in Radiation Oncology
- Intelligent Medical Systems
- Medical Image Computing
- Radiooncology - Radiobiology
- Smart Technologies for Tumor Therapy
- Team
- Research
- Microrobots and Miniaturize Devices for Minimally-invasive Surgery
- Magnetic localization and sensing for biomedical devices
- Nanorobots for Targeted Delivery in Deep Biological Tissues
- 3D Additive Manufacturing of Soft Materials as In Vitro Tumor Models
- Surgical Simulation on Cyber-physical Organ Models
- News
- Vacancies
- Radiation Oncology
- Molecular Radiooncology
- Nuclear Medicine
- Translational Radiation Oncology
- Translational Radiotheranostics
- Interactive Machine Learning
- Intelligent Systems and Robotics in Urology
- Multiparametric methods for early detection of prostate cancer
- Translational Molecular Imaging in Oncologic Therapy Monitoring
- Radiology
- Cell Biology and Tumor Biology
- Research Groups A-Z
- Junior Research Groups
- Core Facilities
- News
- List of Core Facilities
- Antibodies
- Cellular Tools
- Center for Preclinical Research
- Central Library
- Chemical Biology
- Dieter Morszeck Biorepository
- Electron Microscopy
- Flow Cytometry
- Information Technology ITCF
- Light Microscopy
- Metabolomics
- Microarray
- Microbiological Diagnostics
- Next Generation Sequencing
- Omics IT and Data Management
- Proteomics
- Radiopharmaceuticals and Preclinical Trials
- Single-cell Open Lab
- Small Animal Imaging
- Transgenic Service
- Tumor Models
- OMERO@DKFZ
- List of Technologies
- DKFZ Core Facilities Publication Policy
- Enabling Technology
- Data Science @ DKFZ
- INFORM
- Baden-Württemberg Cancer Registry
- Cooperations & Networks
- National Cooperations
- International Cooperations
- Cooperational Research Program with Israel: DKFZ - MOST in Cancer Research
- Program
- Members of the Program Committee
- Call
- Publication Database
- German-Israeli Cancer Research Schools
- Archive
- Heidelberg - Israel, Science and Culture
- Symposium 40 Years of German-Israeli Cooperation
- 35th Anniversary Symposium
- 34th Meeting of the DKFZ-MOST Program
- 40th Anniversary Publication
- 30th Anniversary Publication
- 20th Anniversary Publication
- Flyer - The Cancer Cooperation Program
- List Publications 1976-2004
- Highlight-Projects
- Cooperational Research Program with Israel: DKFZ - MOST in Cancer Research
- Cooperations with industrial companies
- DKFZ PostDoc Network
- Cross Program Topic RNA@DKFZ
- Cross Program Topic Epigenetics@dkfz
- Cross Program Topic Single Cell Sequencing
- WHO Collaborating Centers
- DKFZ Site Dresden
- Health + Life Science Alliance Heidelberg Mannheim
News
Annual COVIPA Retreat 2023 in Heidelberg
The COVIPA Annual Meeting and the PREPARE Young Researcher Retreat 2023 took place in Heidelberg and Leimen. The meeting incorporated a poster presentation session aimed at fostering understanding of each other's projects and receiving input from peers. Social activities and the scientific agenda with projects predominantly presented by doctoral researchers, were also highlights, with prizes awarded for the best presentations.
NEW INFECTION MECHANISM IN CORONAVIRUS DISCOVERED
Researchers from Heidelberg Medical Faculty, Heidelberg University Hospital and German Cancer Research Center investigate molecular relationships that promote infection and spread of SARS- coronavirus-2 / Results provide starting point for development of antiviral therapies
The SARS-coronavirus-2, responsible for the COVID-19 pandemic, triggers a stress response in infected cells that facilitates the virus' entry into the cells. In their search for the underlying molecular mechanism, researchers from the Heidelberg University Medical School and Heidelberg University Hospital (UKHD), in collaboration with the German Cancer Research Center (DKFZ) and the University of Bristol, identified a cellular factor called NUAK2. Its amount is increased by the SARS-CoV-2 mediated cellular stress response and it promotes the entry and spread of the coronavirus in human cells. Thus, NUAK2 could be a new target for the development of antiviral agents.
The research team led by Professor Dr. Dr. h.c. Ralf Bartenschlager, Head of the Division of Molecular Virology at the Center for Infectious Diseases at UKHD and Dr. Vibhu Prasad, Scientist in Molecular Virology has now analyzed the molecular pathways involved in SARS-CoV-2 infection of the cell. The cellular protein NUAK2 plays a central role in this process.
The Heidelberg scientists blocked NUAK2 in the cells and observed reduced infection of cells by SARS-CoV-2 particles. In subsequent studies, the scientists found that NUAK2 regulates the amount of ACE2, the receptor for the virus, on the cell surface. "In addition, our studies showed that increased NUAK2 levels in infected cells increased the number of receptors in uninfected cells as well. As a result, these cells also became more infected with SARS-CoV-2," reports Dr. Vibhu Prasad.
And these correlations could be demonstrated not only with SARS-CoV-2, but also with other coronavirus species such as human coronavirus-229E - a "common cold virus" - and the very dangerous MERS coronavirus, which can be transmitted from camels to humans.
"The research findings provide valuable insights into the intricate mechanisms of SARS-CoV-2 infection and spread. Understanding the role of NUAK2 opens new avenues for therapeutic intervention. By interrupting NUAK2-regulated virus entry, we might be able to prevent the spread of the virus and thereby mitigate the effects of coronavirus infections," says Professor Ralf Bartenschlager.
Prasad V, Cerikan B, Stahl Y, et al. Enhanced SARS-CoV-2 entry via UPR-dependent AMPK-related kinase NUAK2 [published online ahead of print, 2023 Jun 29]. Mol Cell. 2023;S1097-2765(23)00467-7. doi:10.1016/j.molcel.2023.06.020
Source: https://www.klinikum.uni-heidelberg.de/newsroom/new-infection-mechanism-in-coronavirus-discovered/