Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

How Human Cells Can Dissolve Damaging Protein Aggregates

Heidelberg researchers decode fundamental mechanism using in-vitro experiments

No. 37c3 | 12/08/2015

Cellular repair systems can dissolve aggregated proteins andnow Heidelberg researchers have successfully decoded the fundamental mechanism that is key to dissolving these protein aggregates in human cells.Their in-vitro experiments uncovered a multi-stage biochemical process in which protein molecules are dissolved from the aggregates.Researchers at the Center for Molecular Biology at Heidelberg University, the German Cancer Research Center and the Heidelberg Institute for Theoretical Studies collaborated on the project, along with other scientists from Germany, the USA and Switzerland.The results of their research were published in “Nature”.

© dkfz.de

Proteins in all cells – from bacteria to human – are folded in their native state.Proteins are first manufactured as long, sequential chains of amino acids and must assume a specific three-dimensional structure, i.e., fold, to be functional.This correctly folded state, or protein homeostasis, is at constant risk from external and internal forces. Damaged proteins lose their structure, unfoldand then tend to clump together.“If such aggregates form, they can damage the cells and even cause the cells to die, which we see in neurodegenerative diseases such as Alzheimer’s and Parkinson’s, and even in ageing processes,” explains Prof. Dr. Bernd Bukau, Director of the Center for Molecular Biology of Heidelberg University (ZMBH), who is also a researcher at the German Cancer Research Centre (DKFZ).

Prof. Bukau explains notes that damaged proteins clump not only during the ageing process.Protein aggregates can also occur through changes in the protein structure due to mutation or chemical or environmental stresses.A change in growth conditions, such as an increase in ambient temperature, can cause proteins to lose their structure and unfold.“The formation of protein aggregates in different organs of the human body is associated with a large number of diseases, including metabolic disorders,” explains the ZMBH Director.

The researchers report that very little was known about how our natural defences reverse the process of protein aggregation so effectively in young healthy cells.“Dissolving protein aggregates is a critical step in recycling defective proteins and providing protection against stress-induced cell damage.We had several clues as to the main players in this process, but we didn’t know exactly how it worked,” says lead investigator Dr. Nadinath Nillegoda, also a member of Prof. Bukau’s team.The researchers succeeded in identifying a previously unknown, multi-component protein complex that efficiently solubilizes stress-induced protein aggregates in vitro.

This complex consists of molecular folding helpers, the chaperones, which in this case belong to the heat shock protein 70 (Hsp70) class.These are proteins that aid other proteins in the folding process.The Heidelberg researchers also studied the co-chaperones that regulate Hsp70 activity in the protein complex.The co-chaperones of the so-called J-protein family are key, in that they “lure” the Hsp70 folding helpers to the protein aggregates and activate them precisely at their target.“The key finding of our work is that two types of these J-proteins must dynamically interact to maximally activate the Hsp70 helper proteins to dissolve the protein aggregates.Only this launches the potent cellular activity to reverse these aggregates.

Scientists from the Heidelberg Institute for Theoretical Studies (HITS) performed the computational data analysis for this research.For the experimental design and integrating the data from a range of experiments, they developed a special modelling methodology of protein-protein docking to simulate the formation of chaperone complexes.HITS research group leader Prof. Dr. Rebecca Wade, who also conducts research at the ZMBH, notes that molecular-level modelling is essential for understanding the dynamic interactions underlying the coordinated activity of the two types of J-proteins in the chaperone complex.

According to Prof. Bukau, now research is faced with the monumental challenge of understanding the physiological role and the potential of the newly discovered mechanism enough to apply the findings from basic researchand develop novel strategies for therapeutic interventions.In addition to scientists from the ZMBH, DKFZ and HITS, researchers from the Liebniz Institute for Molecular Pharmacology in Berlin, Northwester University in Illinois (USA) and the Swiss Federal Institute of Technology in Zurich (Switzerland) also participated in the work.

Original publication:
N. B. Nillegoda, J. Kirstein, A. Szlachcic, M. Berynskyy, A. Stank, F. Stengel, K. Arnsburg, X. Gao, A. Scior, R. Aebersold, D. L. Guilbride, R. C. Wade, R. I. Morimoto, M. P. Mayer and Bernd Bukau:Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation.Nature (published online 5 August 2015), doi:doi:10.1038/nature14884

Internet information:
http://www.zmbh.uni-heidelberg.de/bukau/default.shtml

Contact:
Prof. Dr. Bernd Bukau
Centre for Molecular Biology of Heidelberg University
Phone: +49 6221 54-6850
direktor@zmbh.uni-heidelberg.de

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS