Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren
Data Science Seminar

Unleashing the Genetic Architecture of Heritable Traits: Integrating Deep Learning, Imaging, and Statistical Methods for Multimodal Genotype-Phenotype Analyses

Abstract

This presentation highlights the integration of genomics, imaging, and machine learning in unraveling the intricate genetic architecture of heritable traits. The discussion commences by showcasing the fusion of deep learning and statistical hypothesis testing, harnessing the power of deep neural network representations to enhance statistical analyses of images. Building upon this foundation, we introduce transferGWAS, an approach that directly applies deep learning to conduct genome-wide association studies of medical images. Our exemplar study on retinal fundus images uncovers novel candidate loci associated with eye-related traits and diseases. Furthermore, we delve into the intricacies of an exome-wide association study, where deep-learning-based functional annotations of the genome enable kernel-based tests to identify significant gene-biomarker associations, facilitating a more interpretable understanding of genetic determinants. Expanding the horizons, we introduce ContIG, our cutting-edge self-supervised multimodal contrastive learning method, enabling the exploration of vast datasets comprising unlabeled medical images and genetic data to unveil cross-modal associations. Finally, we provide insights into our ongoing research within the INTERVENE consortium, illustrating the integration of these innovative methods toward the development of effective polygenic risk scores. Collectively, these endeavors aid our comprehension of the genetic foundations of heritable traits and open new avenues for disease risk prediction.

Biosketch

Prof. Dr. Christoph Lippert is a distinguished researcher in the fields of digital health, machine learning, and statistical genomics. Currently holding positions as Professor and Chair of Digital Health & Machine Learning at the Hasso Plattner Institute for Digital Engineering & Universität Potsdam and as Adjunct Professor at the Icahn School of Medicine at Mount Sinai in NYC, he has been at the forefront of developing innovative methods that integrate machine learning and statistics to advance our understanding of the genetic architecture of heritable traits. With a strong interdisciplinary focus, Prof. Lippert's research combines genomics, imaging, and deep learning to unravel complex relationships between genotype and phenotype. Having completed his studies in Bioinformatics in Munich and his PhD at the University of Tübingen and the Max Planck Institutes in Tübingen, he has held notable positions at renowned institutions including the Max Delbrück Center for Molecular Medicine in Berlin, Human Longevity, Inc. in Mountain View, CA, and Microsoft Research in LA.

to top
powered by webEdition CMS