Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren
Data Science Seminar

Towards Generalist Biomedical AI

Zoom Registration

Abstract

Foundation models have changed how we develop medical AI. These powerful models, trained on massive datasets using self-supervised learning, are adaptable to diverse medical tasks with minimal additional data and paved the way for the development of generalist medical AI systems. In this talk we will explore the capabilities of these models from medical image analysis, to polygenic risk scoring, and aiding in therapeutic development. Additionally, we will discuss the future of generalist and generative models in healthcare and science.

Bio

Shekoofeh (Shek) Azizi is a staff research scientist and research lead at Google DeepMind, where she focuses on translating AI solutions into tangible clinical impact. She is particularly interested in designing foundation models and agents for biomedical applications and has led major efforts in this area. Shek is one of the research leads driving the ambitious development of Google's flagship medical AI models, including REMEDIES, Med-PaLM, Med-PaLM 2, Med-PaLM M, and Med-Gemini. Her work has been featured in various media outlets and recognized with multiple awards, including the Governor General's Academic Gold Medal for her contributions to improving diagnostic ultrasound.

to top
powered by webEdition CMS