Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Strahlentherapie direkt im Körper

Nr. 03c2 | 28.01.2025

Ein Forschungsprojekt des Karlsruher Instituts für Technologie (KIT) und des Deutschen Krebsforschungszentrums (DKFZ) will mit einer neuartigen Technologie Tumoren mit einem winzigen Elektronenbeschleuniger direkt im Körper bestrahlen. Dabei soll gesundes Gewebe bestmöglich geschont werden. Das gemeinsame Vorhaben „Ultracompact electron accelerators for internal radiotherapy (UCART)" wurde als „unkonventionelles Forschungsvorhaben" in das Wildcard-Programm der Carl-Zeiss-Stiftung aufgenommen und erhält eine Förderung von 900.000 Euro.

© KIT/IPBT

Die Strahlentherapie ist eine feste Säule der Krebsbehandlung: Tumorzellen werden ionisierender Strahlung ausgesetzt, um ihre Erbsubstanz zu schädigen und idealerweise den Tumor zu beseitigen. Zwar wird schon lange an Methoden gearbeitet, die möglichst viel Strahlung auf den Tumor lenken und das umliegende Gewebe schonen. Bislang lässt sich aber nicht ganz verhindern, dass bei der Behandlung von Tumoren im Körperinneren auch die Haut und gesunde Organe geschädigt werden können.

Umliegendes Gewebe schonen

Ein Team bestehend aus Anke-Susanne Müller und Matthias Fuchs vom Institut für Beschleunigerphysik und Technologie (IBPT) des KIT und Oliver Jäkel vom DKFZ will daher einen neuartigen Elektronenbeschleuniger für die Strahlentherapie entwickeln. Bestehende Bestrahlungsapparate geraten an ihre Grenzen und die Möglichkeiten, sie weiter zu verbessern, sind weitgehend ausgeschöpft.

Die Forschenden setzen stattdessen auf eine neue Methode. „Wir benutzen hochintensives Laserlicht, um Elektronen über kürzeste Distanzen auf Lichtgeschwindigkeiten zu katapultieren", so Fuchs. Diese Elektronen werden dann direkt auf den Tumor gelenkt, um diesen zu zerstören. Mit dem lichtgetriebenen Mechanismus könnte die Größe eines Elektronenbeschleunigers um mehr als das 1000-fache reduziert werden, von derzeit ca. einem Meter auf weniger als einen Millimeter. Übrig bliebe ein kompaktes Gerät, kaum breiter als ein Haar, das sich als Aufsatz eines Endoskops in den Körper einführen lässt.

„So könnten Tumoren direkt und hochpräzise von Innen bestrahlt werden, ohne gesundes Gewebe in Mitleidenschaft zu ziehen – eine völlig neue Herangehensweise", erklärt Müller. Zudem sei eine andere Wirkweise der Tumorbehandlung durch ultrakurze, aber hochintensive Ladungs- beziehungsweise Strahlendosispulse möglich – ein einziger Behandlungstermin würde dann für die Therapie ausreichen. Erste Tests der Hochdosisleistungstherapie hätten zudem gezeigt, dass z.B. das Immunsystem durch diese Art der Bestrahlung mobilisiert werde und besser auf Metastasen reagiere.

Strahlentherapie für alle zugänglich

Derzeit braucht es allerdings noch Grundlagenforschung, um offene Fragen zu klären. Hier sind Anke-Susanne Müller mit ihrer Erfahrung in der Beschleunigerphysik und Matthias Fuchs als Experte für Hochleistungslaser gefragt. Oliver Jäkel bringt wiederum seine Expertise aus der Medizinphysik ein, wenn es darum geht, die Technologie für die Strahlentherapie zu optimieren und in ein medizinisches Gerät zu integrieren.

Ziel ist ein kompaktes Bestrahlungsgerät, das deutlich weniger Platz, Wartung und auch Strom benötigt als derzeitige medizinische Geräte. Dies könnte eine kostengünstige Produktion ermöglichen und Strahlentherapien weltweit besser zugänglich machen, so die langfristige Vision des Forschungsteams. „Bisher ist der globale Zugang zu solchen Therapien durch die hohen Anforderungen an Infrastruktur und Kosten stark eingeschränkt", so Jäkel. Die Kapazität der derzeitigen Bestrahlungsgeräte sei bei weitem nicht ausreichend und aufgrund der weltweit steigenden Lebenserwartung und damit einhergehend auch der zunehmenden Zahl an Tumorerkrankungen, benötige man zukünftig sogar noch deutlich mehr Bestrahlungsmöglichkeiten.

In den nächsten zwei Jahren wird das UCART-Team zunächst einen ersten „Demonstrator" konstruieren, danach wollen die Forschenden gemeinsam mit Industriepartnern den Weg für präklinische Studien bis hin zur Anwendung ebnen. Läuft alles nach Plan, könnte die neue Technologie irgendwann ähnlich einfach bedient werden wie Röntgengeräte und in vielen medizinischen Einrichtungen zur Verfügung stehen, wie Anke-Susanne Müller erklärt. „So wären Krebsbehandlungen für eine größere Zahl von Patientinnen und Patienten verfügbar."

Quelle: Presseinformation des KIT

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS