Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Protein-Variante kann Resistenz gegen Schlafkrankheit-Medikament erklären

Nr. 02c2 | 18.01.2021 | von Koh

Eine bestimmte Variante des Oberflächenproteins VSG der afrikanischen Trypanosomen, den Erregern der Schlafkrankheit, steht mit der Resistenz gegen das wichtige Medikament Suramin in Zusammenhang. Wissenschaftler im Deutschen Krebsforschungszentrum konnten nun anhand der Kristallstruktur dieser Proteinvariante eine mögliche Erklärung für die Resistenzbildung finden.

Bild: Afrikanische Trypanosomen, die Erreger der Schlafkrankheit, im Blutausstrich

Afrikanische Trypanosomen, die Erreger der Schlafkrankheit, im Blutausstrich
© Wikimedia Commons, Alan R Walker

Die Schlafkrankheit ist in großen Teilen des tropischen Afrikas verbreitet. Die von der Tsetse-Fliege übertragenen Erreger, afrikanische Trypanosomen, greifen das zentrale Nervensystem an und verursachen schwere neurologische Störungen. Ohne Behandlung kann die Infektion zum Tod führen.

Seit über hundert Jahren wird das in Deutschland entwickelte Medikament Suramin erfolgreich gegen frühe Stadien der Schlafkrankheit eingesetzt. Bis heute gibt es nur eine Handvoll wirksamer Substanzen gegen die Tropenkrankheit, die WHO zählt Suramin daher zu den lebensnotwendigen Medikamenten.

Doch bislang war unklar, wie das Medikament überhaupt ins Innere des Erregers gelangt und wie es dort wirkt. Wissenschaftler konnten im Labor nun Trypanosomen-Stämme züchten, die hohe Resistenz gegenüber Suramin aufwiesen. Dabei zeigt sich, dass die resistenten Stämme alle eine bestimmte Variante des so genannten „variable surface glycoprotein" trugen, genannt VSGsur. „Diese Beobachtung legt natürlich nahe, dass VSGsur an der Ausbildung der Suramin-Resistenz beteiligt ist – allerdings hatten wir keine Vorstellung davon, wie das funktionieren könnte", sagt Erec Stebbins, Strukturbiologe am Deutschen Krebsforschungszentrum.

Mit hochauflösenden Untersuchungen der Kristallstruktur des Proteins konnte Stebbins zeigen, dass die mit der Resistenz verbundenen VSGsur in einem bestimmten Bereich eine grundsätzlich andere Proteinstruktur aufweisen als alle anderen VSGs. Diese Strukturabweichung ermöglicht, dass der Wirkstoff Suramin an das VSGsur binden kann.

Wenn die Wissenschaftler den abweichenden Bereich des VSGsur genetisch modifizierten, reagierten die Trypanosomen wieder empfindlich auf Suramin und der Wirkstoff konnte nicht mehr das VSG binden.

„Wir verstehen noch nicht genau, wie die Suramin-Bindung an VSGsur mit der Resistenz in Verbindung steht", erklärt Stebbins. „Möglicherweise fängt VSGsur den Wirkstoff ab, so dass nicht mehr genug Suramin im Inneren des Erregers ankommt. Auf jeden Fall werden uns die Ergebnisse helfen, die auch nach 100 Jahren noch rätselhafte Wirkung von Suramin besser zu verstehen.

Bislang hatten Wissenschaftler den VSGs eine einzige Funktion zugemessen: Sie galten als hochwirksamer Schutzmantel der Trypanosomen vor dem Immunsystem des Wirts. Die einzelligen Trypanosomen sind von einer dichten Schicht identischer VSGs bedeckt, gegen die sich die Antikörper der Infizierten richten. Dadurch werden die Parasiten großenteils eliminiert – bis einzelne der Erreger auf ein anderes VSG-Gen umschalten – sie haben hunderte davon zur Verfügung. Dadurch werden die Oberflächenproteine auf dem Einzeller komplett ausgetauscht und die so maskierten Trypanosomen von den Antikörpern nicht mehr erkannt. Sie vermehren sich rasant, und die Infektion, die das Immunsystem zunächst in Schach gehalten hatte, flammt wieder heftig auf.

„Die Bindung von Suramin zeigt uns, dass die VSGs über den Immun-Schutz hinaus noch andere, rezeptorartige Funktionen haben können, die wir nun aufklären wollen", so der Wissenschaftler.

Johan Zeelen, Monique van Straaten, Joseph Verdi, Alexander Hempelmann, Hamidreza Hashemi, Kathryn Perez, Philip D. Jeffrey, Silvan Hälg, Natalie Wiedemar, Pascal Mäser, F. Nina Papavasiliou and C. Erec Stebbins

Structure of trypanosome coat protein VSGsur and function in suramin resistance

Nature Microbiology 2021, DOI: https://doi.org/10.1038/s41564-0

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS