Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Künstliche Intelligenz ermöglicht neue Bildgebungsmethoden

Nr. 77 | 09.12.2020 | von Koh

Mit seinen "ERC-Consolidator Grants" unterstützt der Europäische Forschungsrat (ERC) exzellente junge Wissenschaftler beim Ausbau ihrer unabhängigen Karriere. Lena Maier Hein vom Deutschen Krebsforschungszentrum erhält die renommierte Förderung nun für ihr Vorhaben, molekulare Gewebeeigenschaften einfach mit Licht zu analysieren. Das besonderes an ihrem Ansatz: Sie nutzt Methoden der künstlichen Intelligenz (KI) zum einen, um realistische „digitale Zwillinge" medizinischer Geräte und menschlicher Gewebe zu entwickeln. Darüber hinaus hilft die KI dabei, klinische Daten mit den in der virtuellen Umgebung trainierten Algorithmen zu entschlüsseln.

Lena Maier-Hein
© DKFZ/Schwerdt

Gäbe es die Möglichkeit, bei Patienten nichtinvasiv und ohne schädliche Strahlung die molekulare Zusammensetzung eines Gewebes zu analysieren, so käme dies einer Revolution der Medizin gleich. Verschiedene Gewebe im Körper unterscheiden sich hinsichtlich ihres Sauerstoffgehalts, der Temperatur oder der Konzentration von Wasser oder anderen biologischen Molekülen. Gesunde Gewebe unterscheiden sich in manchen dieser Eigenschaften wiederum von kranken.

Wissenschaftler suchen daher bereits seit Jahrzehnten nach einer Methode, um diese Gewebeeigenschaften „auf einen Blick" zu entschlüsseln. Die Techniken der spektralen Bildgebung machen sich die Tatsache zunutze, dass die verschiedenen Gewebekomponenten einzigartige optische Eigenschaften haben. Wenn Licht in biologisches Gewebe eindringt, durchläuft es komplexe Wechselwirkungen, etwa Reflexion, Absorption und Streuung. Spektrale Bildgebungstechniken, wie die multispektrale Bildgebung mit diffuser Reflexion und die Photoakustik, haben dadurch das Potenzial, wichtige Gewebeeigenschaften wie Sauerstoffgehalt, Temperatur oder die Konzentration von Wasser oder verschiedener biologischer Moleküle in hoher räumlicher Auflösung darzustellen.

Die jahrzehntelange Forschung auf diesem Gebiet hat jedoch bislang keine Methoden hervorgebracht, mit denen sich diese Gewebeparameter im klinischen Routineeinsatz akkurat quantifizieren lassen. Die Versuche, dieses Problem mit maschinellem Lernen und künstlicher Intelligenz anzugehen, scheitern häufig am Fehlen annotierter Referenzdaten, die für ein Training der Algorithmen benötigt werden. Das liegt insbesondere daran, dass es bisher keine Referenzmethode gibt, um zu den aufgenommenen Bildern die klinisch relevante Information -wie z.B. die Sauerstoffsättigung - räumlich aufgelöst zu generieren.

Lena Maier-Hein umgeht diesen gefürchteten „Flaschenhals", indem sie Algorithmen auf Basis von simulierten Daten trainiert. Dazu nutzt sie sämtliches Vorwissen, um simulierte Bilder mit perfekten Referenzannotationen zu erzeugen. Dadurch ist sie nicht abhängig davon, dass ihr Daten zur Verfügung gestellt werden und kann gleichzeitig regulatorische Hürden umgehen.

Doch das Lernen aus Simulationen scheitert häufig am fehlenden Realismus der Simulation – das heißt, das vorhandene Wissen reicht nicht aus, um vollkommen realistische Bilder zu simulieren. KI-Forscher bezeichnen dieses Problem als „domain gap". Maier-Hein geht noch einen Schritt weiter und nutzt KI-Methoden, um diese „Lücke" zu überwinden. Sie setzt die KI also gleich doppelt ein: Zum einen für die Entschlüsselung der Bilder und zusätzlich, um die Simulation zu verbessern. Das Konzept soll es den bildgebenden Systemen also ermöglichen, aus ihren Erfahrungen zu lernen.

Diese zweite Generation der Spektralbildgebung ist für den Patienten sicher, kostengünstig und hat das Potenzial, viele Bereiche der Gesundheitsversorgung zu verbessern. Eine Vielzahl klinischer Anwendungen dafür ist denkbar - von der Krebsdiagnose bis hin zum Monitoring der Therapien von Herz-Kreislauf- und entzündlichen Erkrankungen.
Bereits 2014 hatte Lena Maier-Hein einen ERC-Strating Grant eingeworben, eine Förderung, die Nachwuchsforscher bei ihren ersten Schritten in die wissenschaftliche Selbständigkeit unterstützen soll. Der Europäische Forschungsrat zeichnet sie nun mit einem „Consolidator Grant" aus. Dieses Förderinstrument soll bereits etablierten Nachwuchswissenschaftler - bis zu zwölf Jahre nach der Promotion - unterstützen und den Ausbau einer unabhängigen Karriere fördern.

Professor Dr. Ing. Lena Maier-Hein, Jahrgang 1980, hat am Karlsruhe Institute of Technology (KIT) sowie am Imperial College in London Informatik studiert und wurde 2013 von der Universität Heidelberg habilitiert. Sie forscht seit 2009 am DKFZ, zunächst als Postdoktorandin, seit 2012 als Leiterin einer selbständigen Nachwuchsgruppe, inzwischen als Abteilungsleiterin. Lena Maier-Hein konnte bereits eine ganze Reihe an wissenschaftlichen Auszeichnungen sammeln, darunter 2013 den Heinz-Maier-Leibniz-Preis der Deutschen Forschungsgemeinschaft sowie 2017 der Preis der Berlin-Brandenburgischen Akademie.

 

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS