Protein-Anker als neu entdecktes Schlüsselmolekül für Krebsausbreitung und Epilepsie
Bestimmte Anker-Proteine hemmen einen zentralen Stoffwechsel-Treiber, der bei Tumorerkrankungen und Entwicklungsstörungen des Gehirns eine wichtige Rolle spielt. Zu diesem Ergebnis, das neue Chancen für personalisierte Therapien von Krebs und neuronalen Erkrankungen eröffnen könnte, kamen Wissenschaftlerinnen des Deutschen Krebsforschungszentrums (DKFZ) und der Universität Innsbruck gemeinsam mit einem europaweiten Forschungsnetzwerk. Sie publizierten ihre Arbeit in der Fachzeitschrift Cell.
Das Signalprotein MTOR (Mechanistic Target of Rapamycin) ist ein Sensor für Nährstoffe wie Aminosäuren und Zucker. Wenn genügend Nährstoffe zur Verfügung stehen, kurbelt MTOR den Stoffwechsel an und sorgt dafür, dass ausreichend Energie und Zellbausteine zur Verfügung stehen. Da MTOR ein zentraler Schalter für den Stoffwechsel ist, führen Fehler in seiner Aktivierung zu ernsten Krankheiten. Krebserkrankungen und Fehlentwicklungen des Nervensystems, die zu Verhaltensstörungen und Epilepsie führen, können die Folge sein, wenn MTOR fehlgeschaltet ist.
Daher kontrolliert die Zelle die MTOR-Aktivität sehr genau, unter anderem mithilfe sogenannter Suppressoren. Das sind Moleküle, die ein Protein hemmen und dabei helfen, seine Aktivität zu dosieren. Der TSC-Komplex ist so ein Suppressor für MTOR. Er ist nach der Erkrankung, die sein Fehlen hervorruft, benannt – der Tuberösen Sklerose (engl. tuberous sclerosis, TSC). Der TSC-Komplex sitzt gemeinsam mit MTOR an kleinen Strukturen in der Zelle, den sogenannten Lysosomen, und hält dort MTOR in Schach. Wenn der TSC Komplex – beispielsweise durch Veränderungen in einer seiner Komponenten – nicht mehr am Lysosom bleibt, kann dies zu übermäßiger MTOR-Aktivität mit schweren gesundheitlichen Folgen führen.
Protein mit Ankerfunktion
Die Teams um Christiane Opitz am DKFZ und Kathrin Thedieck an der Universität Innsbruck erforschten deshalb, auf welche Weise der TSC-Komplex an Lysosomen bindet. Hierbei entdeckten sie, dass die G3BP-Proteine (engl. Ras GTPase-activating protein-binding protein) zusammen mit dem TSC-Komplex an Lysosomen sitzen. „Dort bilden die G3BP-Proteine einen Anker, der dafür sorgt, dass der TSC-Komplex an die Lysosomen binden kann", erläutert Mirja Tamara Prentzell vom DKFZ, Erstautorin der Publikation. Diese Ankerfunktion spielt in Brustkrebszellen eine entscheidende Rolle. Ist die Menge von G3BP-Proteinen in Zellkulturen vermindert, so führt dies nicht nur zu einer erhöhten MTOR-Aktivität, sondern steigert auch die Migration der Zellen. Wirkstoffe, die MTOR hemmen, verhindern diese Ausbreitung, konnten die Forscherinnen in Zellkulturen zeigen. In Brustkrebspatientinnen korreliert eine niedrige G3BP-Menge mit einer schlechteren Prognose. „Marker wie die G3BP-Proteine könnten hilfreich sein, um Therapien zu personalisieren, die auf einer Hemmung von MTOR beruhen", erklärt Kathrin Thedieck, Professorin für Biochemie an der Universität Innsbruck. Das Gute daran: Wirkstoffe, die MTOR hemmen, sind sogar bereits als Krebsmedikamente zugelassen und könnten gezielt in weiterführenden Studien eingesetzt werden.
Auch im Gehirn hemmen die G3BP-Proteine MTOR. Im Zebrafisch, einem für die Forschung wichtigen Tiermodell, beobachteten die Forscherinnen Störungen der Gehirnentwicklung, wenn G3BP fehlt. Dies führt zu neuronaler Hyperaktivität ähnlich wie bei Epilepsie im Menschen. Diese neuronalen Entladungen konnten durch Wirkstoffe, die MTOR hemmen, unterdrückt werden. „Wir hoffen deshalb, dass Patienten mit seltenen erblichen neurologischen Erkrankungen, bei denen Funktionsstörungen der G3BP-Proteine eine Rolle spielen, von Wirkstoffen gegen MTOR profitieren könnten," sagt Christiane Opitz vom DKFZ. Dies möchten die Wissenschaftlerinnen zukünftig gemeinsam mit ihrem europaweiten Forschungsnetzwerk untersuchen.
Die Autorinnen der aktuellen Studie wurden u.a. von der Deutschen Forschungsgemeinschaft und der Europäischen Union im Rahmen des Brustkrebskonsortiums MESI-STRAT (www.mesi-strat.eu), der deutschen Tuberöse Sklerose Stiftung und der niederländischen Stiftung TSC Fonds gefördert.
G3BPs tether the TSC complex to lysosomes and suppress mTORC1 signaling. Prentzell MT*, Rehbein U*, Cadena Sandoval M*, De Meulemeester A*, Baumeister R, Brohée L, Berdel B, Bockwoldt M, Carroll B, Chowdhury SR, von Deimling A, Demetriades C, Figlia G, Genomics England Research Consortium, Eca Guimaraes de Araujo M, Heberle AM, Heiland I, Holzwarth B, Huber LA, Jaworski J, Kedra M, Kern K, Kopach A, Korolchuk VI, van 't Land-Kuper I, Macias M, Nellist M, Palm W, Pusch S, Ramos Pittol JM, Reil M, Reintjes A, Reuter F, Sampson JR, Scheldeman C, Siekierska A, Stefan E, Teleman AA, Thomas LE, Torres-Quesada O, Trump S, West HD, de Witte P, Woltering S, Yordanov T, Zmorzynska J, Opitz CA#, Thedieck K#.
Cell 2021, DOI: https://doi.org/10.1016/j.cell.2020.12.024
Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.
Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.