Nr. 23

DKTK München: Bremse für Leukämiezellen

Leukämiezelle mit dem Chromosomenfehler 8;21: Die beiden gelben Signale zeigen, wo sich jeweils ein Stück eines Chromosoms 8 (rot) mit einem Stück von Chromosom 21 (grün) verbunden hat.“
Leukämiezelle mit dem Chromosomenfehler 8;21: Die beiden gelben Signale zeigen, wo sich jeweils ein Stück eines Chromosoms 8 (rot) mit einem Stück von Chromosom 21 (grün) verbunden hat.“

Um sich ungehemmt teilen zu können, benötigen Krebszellen viel Energie. Wissenschaftler des Deutschen Konsortium für Translationale Krebsforschung (DKTK) vom Universitätsklinikum München (LMU) haben herausgefunden, wie sich Leukämiezellen diese zusätzliche Energie verschaffen. Dieser Mechanismus lässt sich möglicherweise zukünftig nutzen, um die Blutkrebszellen auszubremsen. Im DKTK verbindet sich das Deutsche Krebsforschungszentrum (DKFZ) als Kernzentrum langfristig mit onkologisch besonders ausgewiesenen universitären Partnerstandorten und Kliniken in Deutschland. Das Projekt wurde von der Wilhelm Sander-Stiftung gefördert.

Biomarker spielen heute in der Krebsmedizin eine wichtige Rolle, um Krebserkrankungen präziser zu diagnostizieren und den Krankheitsverlauf besser vorherzusagen. Ein häufig mit Leukämie assoziierter Marker ist der Chromosomenfehler „Translokation 8;21“, wobei sich ein Stück des Chromosoms 8 mit dem Chromosom 21 verbindet. Bereits in den 1970er Jahren erkannte man, dass ein erheblicher Teil von Patienten, die an der Blutkrebsform Akuter Myeloischer Leukämie (AML) leiden, diese Chromosomenveränderung in den entarteten Krebszellen tragen. Wissenschaftliche Studien zeigten jedoch, dass der Chromosomenumbau allein nicht ausreicht, um Leukämie auszulösen.

Im Rahmen des Deutschen Konsortiums für Translationale Krebsforschung (DKTK) haben Forscher an der Medizinischen Klinik III des Klinikums der Universität München (LMU) jetzt eine neue Mutation entdeckt, die das Wachstum der Krebszellen begünstigt. Durch die Mutation im Gen „ZBTB7A“ wird der Energieumsatz der Zellen angekurbelt. „In gesunden Zellen wirkt das aktive ZBTB7A-Gen wie eine Handbremse für den Stoffwechsel“, erklärt Philipp Greif, der die DKTK Nachwuchsgruppe Pathogenese der Akuten Myeloischen Leukämie an der LMU leitet. „Ist das Gen defekt, erhalten die Krebszellen mehr Energie, um sich ungebremst zu teilen.“

Umgekehrt konnten die Wissenschaftler zeigen, dass sich das Wachstum von Leukämiezellen drosseln lässt, wenn die Krebszellen gentechnisch so verändert werden, dass sie vermehrt aktives ZBTB7A produzieren. Einen Hinweis auf den wachstumshemmenden Effekt des Gens beobachteten die Forscher auch in der Klinik: Leukämiepatienten, in deren Krebszellen das Gen vermehrt abgelesen wird, hatten eine deutlich höhere Überlebenschance, als solche, bei denen das ZBTB7A-Gen kaum oder gar nicht aktiv war.

Im DKTK gehört Philipp Greif zu den forschenden Ärzten, die nach neuen Ansätzen suchen, um Patienten zielgerichteter therapieren zu können. „Den Krankheitsverlauf anhand von genetischen Markern einzuschätzen hilft uns, die richtige Therapie zu empfehlen. In manchen Fällen besteht die Möglichkeit mit einer Chemotherapie allein zu heilen, während in anderen Fällen nur die anschließende Stammzelltransplantation eine Chance auf Heilung bietet“, betont Philipp Greif. Mithilfe des verfügbaren Probenmaterials im Labor für Leukämiediagnostik der LMU und der Sammlung der anderen DKTK Standorte wollen die Wissenschaftler herausfinden, ob sich der neue Marker dazu eignet, um Therapien individuell auf einzelne Patienten zuzuschneiden.

Auch für die Entwicklung neuer Therapieansätze für AML Patienten ist die Entdeckung vielversprechend. „Mit speziell veränderten Zuckermolekülen ließe sich der Energiegewinnungsprozess der AML Zellen möglicherweise blockieren“, erläutert die Erstautorin der Studie Luise Hartmann „Erste klinische Prüfungen bei anderen Krebserkrankungen haben bereits gezeigt, dass solche Wirkstoffe für Patienten gut verträglich sind.“

Rund ein Viertel der Leukämiepatienten mit der Chromosomenveränderung 8;21 tragen das mutierte ZBTB7A-Gen. Aber auch bei Leukämiepatienten, in deren Krebszellen keine Mutationen im ZBTB7A-Gen nachweisbar waren, sahen die Wissenschaftler einen deutlichen Zusammenhang zwischen der Aktivität des Gens und dem Krankheitsverlauf. „Die Therapie mit dem Stoffwechsel-Hemmer könnte daher bei einem größeren Kreis von Patienten funktionieren“, sagt Philipp Greif. Auch für andere Krebsarten könnte der Ansatz interessant werden. ZBTB7A-Mutationen kommen beispielsweise auch bei anderen Krebserkrankungen, wie z.B. beim Darmkrebs vor.

Hartmann, L. et. al.: ZBTB7A mutations in acute myeloid leukaemia with t(8;21) translocation. In: Nature Communications (02. Juni 2016) DOI: 10.1038/NCOMMS11733

Förderung: Dieses Projekt wurde durch die Wilhelm Sander-Stiftung (2014.162.1) und durch den SFB 1243 „Cancer Evolution“ (DFG) gefördert.

Ein Bild zu dieser Mitteilung steht im Internet zur Verfügung unter:
aml-zelle-klinikum-muenchen.jpg

Bildlegende: Leukämiezelle mit dem Chromosomenfehler 8;21: Die beiden gelben Signale zeigen, wo sich jeweils ein Stück eines Chromosoms 8 (rot) mit einem Stück von Chromosom 21 (grün) verbunden hat.“

Quelle: Stephanie Schneider /Labor für Leukämiediagnostik, Klinikum der LMU

Über das DKFZ

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)

Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Formular

Formulardaten werden geladen ...