Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Auf verschlungenen Wegen zur Genaktivität

Nr. 37 | 01.08.2014 | von Koh

Kleine chemische Änderungen an der DNA, die Methylgruppen, können darüber entscheiden, ob ein Gen abgelesen wird oder nicht. Wissenschaftler aus dem Deutschen Krebsforschungszentrum entdeckten nun, auf welche Weise die Methylmarkierungen die Genaktivität regulieren können: Sie beeinflussen, wo sich die DNA um ihre Verpackungsproteine schlingt und dabei die so genannten Nukleosomen formt. Die Entfernung der Methylgruppen macht diese Spulen instabil und gibt bislang unzugängliche DNA-Bereiche zur Bindung von Enzymen frei, die die Genaktivität ankurbeln.

Im Zellkern ist der meterlange DNA-Faden um Proteinkomplexe gewunden, so wie ein Seil um Spulen gewickelt ist. Durch Verschieben oder Entfernen der Spulen, werden vorher unzugängliche DNA-Bereiche frei (Bild aus Längst & Becker 2001, J. Cell Sci. 114, 2561-8, mit freundlicher Genehmigung des Verlags)

Zellen kontrollieren sehr genau, welche ihrer Gene zu einem gegebenen Zeitpunkt aktiv sind und abgelesen werden können. Entscheidend ist dies beispielweise, wenn eine Stammzelle zur spezialisierten Gewebezelle ausreift und dabei ganz andere zelluläre Programme abrufen muss. Eine Vielzahl sogenannter epigenetischer Mechanismen ist an dieser Regulation beteiligt. Ein besonders wichtiges epigenetisches Signal ist die Methylierung der DNA: Einzelne Methylgruppen am DNA-Baustein Cytosin beeinflussen, ob die Information eines Gens abgelesen werden kann.

„Zahlreiche Studien zeigen dramatische Unterschiede im DNA-Methylierungsmuster zwischen verschiedenen Zellen“, sagt Dr. Karsten Rippe vom Deutschen Krebsforschungszentrum. „Bislang war aber nicht bekannt, auf welche Weise die Änderungen der DNA-Methylierung bewirken, dass ein Gen abgelesen wird oder eben nicht.“

Der Genomforscher aus dem DKFZ vermutete, dass die Methylierung sich auf die Verpackung der DNA auswirken könnte: Der meterlange DNA-Faden liegt nicht als chaotisches Knäuel im Zellkern, sondern als komplex gewickelte Struktur vor. Die Spulen, um die der DNA-Faden zunächst geschlungen ist, bestehen aus einen Komplex mehrerer Proteine. Die gewickelten Spulen werden als Nukleosomen bezeichnet, die durch den DNA „Faden“ zu einer Kette verknüpft sind.

Dort, wo die DNA zu Nukleosomen aufgespult ist, ist sie oft unzugänglich für die Enzyme, die das Erbgut lesen und aktivieren. Deshalb müssen die Bindungsstellen dieser „Genschalter“ auf dem Fadenabschnitt zwischen den Nukleosomen liegen, um ein Gen anschalten zu können.

Rippes Team entdeckte nun, dass die Position der Spulen abhängig von der Methylierung der DNA ist. Die Forscher verglichen stärker oder schwächer methylierte DNA in embryonalen Stammzellen und in den daraus hervorgehenden ausgereiften Zellen. Änderte sich im Zuge dieser Entwicklung das Methylierungsmuster der DNA, so änderte dies gleichzeitig die Positionen der Nukleosomen an bestimmten Stellen des Genoms. Dort, wo die Zellen die DNA-Methylierung durch Hydroxymethylierung ersetzt hatten, waren die Nukleosomen instabil und konnten durch das DNA-bindende Protein CTCF verdrängt werden. Auf stabil methylierter DNA dagegen saßen die Nukleosomen fest und CTCF kam nicht zum Zuge.

CTCF ist dafür bekannt, dass es die räumliche Faltung des DNA-Fadens begünstigt und so die dreidimensionale Anordnung des Erbmoleküls im Zellkern steuert. Dadurch separiert es aktive DNA-Bereiche von solchen, die nicht abgelesen werden und reguliert die Genaktivität. Vladimir Teif, der Erstautor der Arbeit, interpretiert seine Ergebnisse: „Die Methylierung gewinnt durch dieses Zusammenspiel einen viel größeren Aktionsradius: Es können großräumige Veränderung der dreidimensionalen Organisation der DNA in einem Bereich von bis zu 100.000 DNA-Bausteinen entstehen.“

Auch zwischen Krebszellen und gesunden Zellen bestehen erhebliche Unterschiede in der DNA-Methylierung und damit in der Aktivität der Gene. Die Forscher um Karsten Rippe prüfen in ihrer Arbeit nun bei Leukämie-Pateinten, ob sie in den Blutkrebs-Zellen eine tumortypische Verschiebung der Nukleosomen-Anordnung entdecken können.

Die Arbeit wurde vom Bundesministerium für Bildung und Forschung (BMBF) im ERASysBioPlus Programm gefördert.

Teif V.B., Beshnova D.A., Vainshtein Y., Marth C., Mallm J.P., Höfer T. and Rippe K. Nucleosome repositioning links DNA (de)methylation and differential CTCF binding during stem cell development. Genome Res. 24, 1285-1295. DOI: 10.1101/gr.164418.11

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS