Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Das schnellste Nanoskop der Welt

Nr. 36 | 29.07.2015 | von Koh

Forscher um Stefan Hell am Deutschen Krebsforschungszentrum (DKFZ) haben die Aufnahmegeschwindigkeit der hochauflösenden optischen STED-Nanoskopie extrem gesteigert. Ihre nun in „Nature Methods“ publizierten Ergebnisse zeigen erstmals, dass Aufnahmen mit bis zu 1000 Bildern pro Sekunde möglich sind. Damit sind hochauflösende Videos mit Zeitschritten von Millisekunden möglich, zum Beispiel von Transportvorgängen in lebenden Nervenzellen oder von Viren, die vor dem Eintritt in die Zelle zunächst deren Oberfläche erkunden, wie die Forscher in ersten Anwendungsbeispielen zeigen.

Ultraschnelle STED-Nanoskopie von EGFP-markierten Vesikeln im Neuron der lebenden Larve einer Drosophila melanogaster (Taufliege) mit 8 Millisekunden Zeitauflösung. Der rote Pfeil zeigt auf ein sich schnell bewegendes Vesikel (bis zu 1.8 µm/s), das ein anderes, ebenfalls mobiles Vesikel (weißer Pfeil) überholt. Skalenbalken: 1 µm.
© Jale Schneider und Jasmin Zahn, Abteilung Optische Nanoskopie, Deutsches Krebsforschungszentrum

Die Lichtmikroskopie ist eine der wichtigsten Methoden der modernen biomedizinischen Forschung. Mit Hilfe der Fluoreszenz können Biomoleküle gezielt markiert und dann direkt beobachtet werden, auch in lebenden Zellen und Geweben. Seit einigen Jahren wachsen die Möglichkeiten dieser Technik rasant an, da die sogenannte Beugungsgrenze der Auflösung in der klassischen optischen Mikroskopie dank neuer Ansätze überwunden werden kann. Auch mit Licht werden nun Objekte im Nanometerbereich sichtbar – die Auflösung nähert sich damit immer mehr der des Elektronenmikroskops.

Nachdem der Nobelpreis in Chemie 2014 „für die Entwicklung der super-auflösenden Fluoreszenzmikroskopie“ mit Stefan Hell den Pionier dieser Entwicklung ehrte (den Preis erhielt er zusammen mit seinen amerikanischen Kollegen Eric Betzig und W.E. Moerner), wollte Hell neben der räumlichen Auflösung auch die zeitliche an die Grenzen des Möglichen führen.

Eine hohe zeitliche Auflösung ist immer dann wichtig, wenn Vorgänge so schnell ablaufen, dass nur mit einer ganzen Serie von Bildern zu erkennen ist, was im Detail vor sich geht. Dauert das einzelne Bild zu lange, verwischt die Bewegung wie bei der fotografischen Aufnahme eines schnellen Autos mit zu langer Belichtungszeit. Idealerweise nimmt man möglichst schnell eine hohe Zahl von Bildern in direkter Abfolge auf.

Während ihrer Doktorarbeit bei Stefan Hell entwickelte Jale Schneider unter Betreuung  von Johann Engelhardt  ein neues, technisch anspruchsvolles Verfahren, mit dem die Laserstrahlen in der STED-Methode die Probe in bisher nicht gekannter Geschwindigkeit abtasten können – in den beschriebenen Experimenten bewegt sich der Laserfokus 4000 mal schneller als bisher. Das rapide aufgebaute Bild macht diesen STED-Ansatz zum derzeit mit Abstand schnellsten Nanoskopie-Verfahren weltweit.

So konnten hochaufgelöste Aufnahmen von schnell ablaufenden dynamischen Vorgängen gewonnen werden: Darunter die Bewegung von Vesikeln in Nervenzellen von Fliegenlarven (siehe Bild) und von AIDS-Viruspartikeln vor und während der Aufnahme in die Zelle. Diese Anwendungsbeispiele gehen auf den langjährigen intensiven Austausch von Hells Heidelberger Arbeitsgruppe mit den Labors von Hans-Georg Kräusslich (Universitätsklinikum Heidelberg) und Stephan Sigrist (Freie Universität Berlin) zurück.

Die konsequente Weiterentwicklung von STED und verwandten Technologien sowie ihre Anwendung in der medizinischen Forschung ist Hauptziel der Abteilung Optical Nanoscopy am Heidelberger DKFZ. Stefan Hell ist außerdem Direktor am Max-Planck-Institut für biophysikalische Chemie in Göttingen.

J. Schneider, J. Zahn, M. Maglione, S.J. Sigrist, J. Marquard, J. Chojnacki, H.-G. Kräusslich, S.J. Sahl, J. Engelhardt, S.W. Hell: Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nature Methods 2015, 10.1038/nmeth.3481 

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS