Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren
Data Science Seminar

Beyond Causality: Discovering and Analyzing the Governing Equations of Medicine

Abstract

In this talk, I will present several cutting-edge machine learning methods developed in our lab which enable us to discover and analyze the governing equations of medicine, moving beyond traditional causal discovery methods. The focus will be on how this new way of modeling medical and biological processes as dynamical systems offers unprecedented insights into disease progression and the efficacy of treatment strategies over time. Through real-world examples, I will illustrate the transformative impact which I believe this new strand of machine learning can play in deciphering complex medical phenomena and improving patient care.

Biosketch

Mihaela van der Schaar is the John Humphrey Plummer Professor of Machine Learning, Artificial Intelligence and Medicine at the University of Cambridge and a Fellow at The Alan Turing Institute in London. In addition to leading the van der Schaar Lab, Mihaela is founder and director of the Cambridge Centre for AI in Medicine (CCAIM).
 
Mihaela's ground-breaking work on machine learning for healthcare includes the development of improved methods for forecasting individual risks and for identifying covariates that are most important for forecasting risk. Her work has identified better treatment options for patients with heart failure, cystic fibrosis, breast cancer, and Alzheimer's disease.

Mihaela has also developed a state-of-the-art predictive model (already implemented in a number of hospitals) to manage hospitalised patients at risk of sudden deterioration, in addition to a framework (currently undergoing trials in the UK, in collaboration with NHS Digital and Public Health England) for more efficient allocation of limited resources across hospitals during the current COVID-19 pandemic.

to top
powered by webEdition CMS