Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren
Data Science Seminar

Machine Learning for Single Cell Omics

In this talk I will describe several machine learning-based methods to analyze single cell omics data, which provide a rich characterization of individual cells within a heterogeneous population. I will focus on: 1) methods to transform raw single-cell transcriptomic data into low-dimensional vector representation of cells that capture biological variability and similarity among cells, 2) methods to infer gene regulatory networks from single-cell transcriptomic data, and 3) methods to integrate multimodal single-cell data, in particular, to "translate" an observed modality such as the transcriptome of a cell into another unobserved modality, such as chromatin accessibility.

Biosketch

Jean-Philippe Vert is a research scientist at Google Brain in Paris and adjunct research professor at PSL Mines ParisTech's Centre for Computational Biology. Prior to joining Google in 2018, he worked as a postdoc in computational biology at Kyoto University (2001-2002), research professor and founding director of the Centre for Computational Biology at Mines ParisTech (2003-2018), team leader at the Curie Institute in Paris on computational biology of cancer (2008-2018), Miller visiting professor at UC Berkeley (2015-2016), and research professor at the department of mathematics of Ecole normale superieure in Paris (2016-2018). He graduated from Ecole Polytechnique (1995), Corps des Mines (1998), and holds a PhD in mathematics from Paris 6 University (2001). His research interest concerns the development of statistical and machine learning methods, particularly to model complex, high-dimensional and structured data, with an application focus on computational biology, genomics and precision medicine. His recent contributions include new methods to embed structured data such as strings, graphs or permutations to vector spaces, regularization techniques to learn from limited amounts of data, and computationally efficient techniques for pattern detection and feature selection. He is also working on several medical applications in cancer research, including quantifying and modeling cancer heterogeneity, predicting response to therapy, and modeling the genome and epigenome of cancer cells at the single-cell level.

 

Twitter handle: @jeanphi_vert

to top
powered by webEdition CMS