Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren
Data Science Seminar

Interactive Segmentation and Annotation of Medical Images

Recording: https://youtu.be/GEzRhFRMs1U 

 

Abstract

Interactive segmentation is an emerging field in medical image analysis, aimed at reducing the time and effort required for manual annotations by incorporating real-time human feedback. By leveraging user inputs—such as clicks, scribbles, or masks—interactive segmentation allows for the iterative refinement of model predictions, effectively guiding the system toward greater accuracy and efficiency. Recent advancements in deep learning have significantly accelerated progress in this domain, with over 120 methods proposed specifically for medical imaging in the past five years.
This talk will delve into how user interactions are transformed into guidance signals that direct models toward more precise outcomes. These interactions are often simulated during training to mirror real-world user behaviour, ensuring that models are robust and adaptable in practical scenarios. Additionally, the role of active learning will be examined, showcasing how models intelligently select the most informative samples, thereby reducing the annotation workload while optimizing model performance.
The discussion will also address critical challenges in the field, such as the lack of standardized benchmarks and inconsistent evaluation practices across methods. By offering a structured overview of current approaches, the talk will highlight emerging opportunities and explore the future of interactive segmentation in medical imaging, particularly in the era of foundation models.

Biosketch

Zdravko Marinov received his bachelor's and master's degree in computer science from the Karlsruhe Institute of Technology, Germany, in 2019 and 2021 respectively. He is currently working toward a PhD in the Computer Vision for Human-Computer Interaction lab at the Karlsruhe Institute of Technology under the Helmholtz Information & Data Science School for Health (HIDSS4Health) and the supervision of Prof. Rainer Stiefelhagen. His research interests include interactive segmentation using deep learning to accelerate the annotation of medical images and medical image analysis. He has a strong collaboration with the Institute of Artificial Intelligence (IKIM) led by Prof. Jens Kleesiek in the University Clinic Essen. In the last two years he has published his research in TPAMI, ICCV, ECCV, IROS, MICCAI, among others, and has landed top spots in segmentation challenges in MICCAI and CVPR.

 

Contact details: https://cvhci.anthropomatik.kit.edu/people_2240.php 

to top
powered by webEdition CMS