Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren
Data Science Seminar

Active Invariant Causal Prediction: Experiment Selection through Stability

One fundamental difficulty of causal learning is that causal models can generally not be fully identified based on observational data only. Interventional data, that is, data originating from different experimental environments, improves identifiability. However, the improvement depends critically on the target and nature of the interventions carried out in each experiment. Since in real applications experiments tend to be costly, there is a need to perform the right interventions such that as few as possible are required. In this talk, I will present new active learning (i.e. experiment selection) strategies based on causal invariance, which select intervention targets that quickly reveal the direct causes of a response variable of interest in the causal graph.

https://arxiv.org/pdf/2006.05690.pdf

Biosketch Christina Heinze-Deml

Christina Heinze-Deml is a senior postdoc and lecturer at the Seminar for Statistics at ETH Zurich. During her PhD she was advised by Nicolai Meinshausen and Jonas Peters and she also spent some time at Facebook AI Research and DeepMind.
Among other things, Christina has worked on privacy-preserving distributed machine learning and causality. Within the field of causality, she has been interested in causal structure learning when data sets from different environments are available and recently, she has used a causal framework to make classifiers more robust to certain adversarial domain shifts. More generally, Christina is particularly interested in exploring the connections between causal inference and robust machine learning.

https://stat.ethz.ch/~heinzec/

to top
powered by webEdition CMS