Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren
Data Science Seminar

How can we narrow the gap between human and machine vision?

Video Record here

Today, modern deep neural networks (DNNs) routinely achieve human-level object recognition performance. However, their complexity makes it notoriously hard to understand how they arrive at a decision, which carries the risk that machine learning applications outpace our understanding of machine decisions—without knowing when machines will fail, and why; when machines will be biased, and why; when machines will be successful, and why. In order to improve our understanding of machine decision-making, I will present two behavioral comparisons of biological and artificial vision. The first one reveals striking discrepancies between machine vision and robust human perception: standard DNNs are prone to shortcut learning, a tendency to exploit unintended patterns that fail to generalize to out-of-distribution input. However, the second one - a large-scale distortion robustness benchmark - gives reason for cautious optimism: While there is still much room for improvement, the behavioral difference between human and machine vision is narrowing, with the best models now matching or exceeding human performance on most out-of-distribution distortion datasets. The single most important factor behind this success turns out to be a very simple one: not the type of training (e.g. self-supervised learning), not the type of model architecture, but instead the mere size of the training dataset. I will conclude by briefly discussing these findings in the context of the "bitter lesson" formulated by Rich Sutton, who argued that "building in how we think we think does not work in the long run".

Biosketch Robert Geirhos

Robert Geirhos recently obtained his PhD from the University of Tübingen and the International Max Planck Research School for Intelligent Systems, where he is working with Felix Wichmann, Matthias Bethge and Wieland Brendel. Robert holds a MSc degree in Computer Science, with distinction, and a BSc degree in Cognitive Science from the University of Tübingen. His studies were complemented by exchange semesters and research stints at the University of Glasgow and the University of Amsterdam, as well as a research internship at Meta AI/FAIR. In his research, Robert aims to develop a better understanding of the hypotheses, biases and assumptions of modern machine vision systems, and to use this understanding to make them more robust, interpretable and reliable.

to top
powered by webEdition CMS