Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren
Data Science Seminar

Advancing deep medical image segmentation with adversarial data augmentation

Abstract

Deep neural networks have been successfully applied to medical image segmentation tasks, with their great potential to accelerate clinical workflows and facilitate large-scale studies. However, the performance of these deep segmentation models can be greatly impacted by changes in the data distribution due to scanner differences, varied imaging conditions as well as population shifts. To achieve satisfactory performance at deployment, these networks generally require massive labelled data collected from various domains (e.g., hospitals, scanners), which is rarely available in practice. In this talk, I will introduce our recent works on novel adversarial data augmentation algorithms to improve model generalization ability and robustness. The talk will cover two topics: a) input space adversarial data augmentation; b) feature-space adversarial data augmentation.

Biosketch

Chen (Cherise) Chen is currently a post-doc researcher in the Oxford BioMedIA group at the University of Oxford, as well as an honorary research fellow at Imperial College London. Chen received her Ph.D. from the Department of Computing at Imperial College London in January 2022 and then worked as a post-doc researcher in the same lab for one year. She also worked as a part-time research scientist at HeartFlow for six months in 2022. Her main research interests lie in the interdisciplinary area of AI and healthcare, with a focus on medical image analysis. Her doctoral thesis entitled "Improving the domain generalization and robustness of neural networks for medical imaging" was featured in ComputerVisionNews magazine. Chen has a good track record of winning challenges in medical image segmentation. She has won the Multi-sequence Cardiac MR Segmentation Challenge in 2019, and the Fetal Brain Tissue Annotation and Segmentation Challenge (FeTA) in 2022. She also served as the organizer of the workshop on Data Augmentation, Labeling, and Imperfections (DALI), MICCAI 2023, CMRxMotion challenge in the STACOM 2022 workshop, MICCAI 2022; Program committee in ECCV-MCV; Reviewer of IEEE TMI, JBHI, MedIA, MICCAI, IPMI, MIDL, etc. Chen has also been awarded as the IEEE TMI Gold-level distinguished reviewer (2020-2022). So far, she has published 28 papers in top conferences and journals on the topic of deep learning for medical data analysis, reaching 1300+ google scholar citations with an h-index of 15.

to top
powered by webEdition CMS