Research
- Research Topics
- Cell Biology and Tumor Biology
- Stem Cells and Cancer
- Inflammatory Stress in Stem Cells
- Experimental Hematology
- Molecular Embryology
- Signal Transduction and Growth Control
- Epigenetics
- Redox Regulation
- Vascular Oncology and Metastasis
- Clinical Neurobiology
- Molecular Neurogenetics
- Molecular Neurobiology
- Mechanisms Regulating Gene Expression
- Molecular Biology of Centrosomes and Cilia
- Dermato-Oncology
- Pediatric Leukemia
- Tumour Metabolism and Microenvironment
- Personalized Medical Oncology
- Molecular Hematology - Oncology
- Cancer Progression and Metastasis
- Translational Surgical Oncology
- Neuronal Signaling and Morphogenesis
- Cell Signaling and Metabolism
- Cell Fate Engineering and Disease Modeling
- Cancer Drug Development
- Cell Morphogenesis and Signal Transduction
- Functional and Structural Genomics
- Molecular Genome Analysis
- Molecular Genetics
- Pediatric Neurooncology
- Cancer Genome Research
- Chromatin Networks
- Functional Genome Analysis
- Theoretical Systems Biology
- Neuroblastoma Genomics
- Signaling and Functional Genomics
- Signal Transduction in Cancer and Metabolism
- RNA-Protein Complexes and Cell Proliferation
- Systems Biology of Signal Transduction
- Areas of Interest
- Advancement of clinical proteomics for systems medicine
- Bridging from the single cell to the cell population – Epo-induced cellular responses and erythroleukemia
- Deciphering tumor microenvironment interactions determining lung cancer development
- Mechanisms controlling the compensation of liver injury and towards model-based biomarkers for early detection of liver cancer
- Application of dynamic pathway modelling for personalized medicine
- Group Members
- Publications
- Open Positions
- Funding
- Teaching
- Areas of Interest
- Molecular thoracic Oncology
- Proteomics of Stem Cells and Cancer
- Computational Genomics and System Genetics
- Applied Functional Genomics
- Applied Bioinformatics
- Translational Medical Oncology
- Metabolic crosstalk in cancer
- Pediatric Glioma Research
- Cancer Epigenomics
- Translational Pediatric Sarcoma Research
- Artificial Intelligence in Oncology
- Mechanisms of Genomic Variation and Data Science
- Neuropathology
- Pediatric Oncology
- Neurooncology
- Somatic Evolution and Early Detection
- Translational Control and Metabolism
- Soft-Tissue Sarcoma
- Precision Sarcoma Research
- Brain Mosaicism and Tumorigenesis
- Mechanisms of Genome Control
- Translational Gastrointestinal Oncology and Preclinical Models
- Translational Lymphoma Research
- Mechanisms of Leukemogenesis
- Genome Instability in Tumors
- Developmental Origins of Pediatric Cancer
- Brain Tumor Translational Targets
- Translational Functional Cancer Genomics
- Regulatory Genomics and Cancer Evolution
- SPRINT
- Cancer Risk Factors and Prevention
- Cancer Epidemiology
- Biostatistics
- Clinical Epidemiology and Aging Research
- Health Economics
- Physical Activity, Prevention and Cancer
- Preventive Oncology
- Personalized Early Detection of Prostate Cancer
- Digital Biomarkers for Oncology
- Tumorigenesis and molecular cancer prevention
- Genomic Epidemiology
- Cancer Survivorship
- Immunology, Infection and Cancer
- Structural Biology of Infection and Immunity
- Cellular Immunology
- B Cell Immunology
- Immune Diversity
- Immunoproteomics
- Personalized Immunotherapy
- mRNA Cancer Immunotherapies
- Tumor Immunology and Tumor Immunotherapy
- Infections and Cancer Epidemiology
- Pathogenesis of Virus-Associated Tumors
- Immunotherapy and Immunoprevention
- Virus-associated Carcinogenesis
- Chronic Inflammation and Cancer
- Microbiome and Cancer
- Molecular Oncology of Gastrointestinal Tumors
- Applied Tumor Immunity
- Neuroimmunology and Brain Tumor Immunology
- Applied Tumor Biology
- Virotherapy
- Adaptive Immunity and Lymphoma
- Dermal Oncoimmunology
- Immune Regulation in Cancer
- Systems Immunology and Single Cell Biology
- Pediatric Immuno-Oncology
- Epithelium Microbiome lnteractions
- Experimental Hepatology, Inflammation and Cancer
- GMP & T Cell Therapy
- Tumorvirus-specific Vaccination Strategies
- Mammalian Cell Cycle Control Mechanisms
- Molecular Therapy of Virus-Associated Cancers
- DNA Vectors
- Episomal-Persistent DNA in Cancer- and Chronic Diseases
- Immune Monitoring
- News
- Imaging and Radiooncology
- Radiology
- Research
- Computational Radiology Research Group
- Contrast Agents In Radiology Research Group
- Neuro-Oncologic Imaging Research Group
- Radiological Early Response Assessment Of Modern Cancer Therapies
- Imaging In Monoclonal Plasma Cell Disorders
- 7 Tesla MRI - Novel Imaging Biomarkers
- Functional Imaging
- Visualization And Forensic Imaging
- PET/MRI
- Dual- and Multienergy CT
- Radiomics Research Group
- Prostate Research Group
- Bone marrow
- Musculoskeletal Imaging
- Microstructural Imaging Research Group
- Staff
- Patients
- Research
- Medical Physics in Radiology
- X-Ray Imaging and Computed Tomography
- Federated Information Systems
- Translational Molecular Imaging
- Medical Physics in Radiation Oncology
- Biomedical Physics in Radiation Oncology
- Intelligent Medical Systems
- Medical Image Computing
- Radiooncology - Radiobiology
- Smart Technologies for Tumor Therapy
- Radiation Oncology
- Molecular Radiooncology
- Nuclear Medicine
- Translational Radiation Oncology
- Translational Radiotheranostics
- Interactive Machine Learning
- Intelligent Systems and Robotics in Urology
- Multiparametric methods for early detection of prostate cancer
- Translational Molecular Imaging in Oncologic Therapy Monitoring
- Radiology
- Cell Biology and Tumor Biology
- Research Groups A-Z
- Junior Research Groups
- Core Facilities
- News
- List of Core Facilities
- Antibodies
- Cellular Tools
- Center for Preclinical Research
- Central Library
- Chemical Biology
- Dieter Morszeck Biorepository
- Electron Microscopy
- Flow Cytometry
- Information Technology ITCF
- Light Microscopy
- Metabolomics
- Microarray
- Microbiological Diagnostics
- Next Generation Sequencing
- Omics IT and Data Management
- Proteomics
- Radiopharmaceuticals and Preclinical Trials
- Single-cell Open Lab
- Small Animal Imaging
- Transgenic Service
- Tumor Models
- OMERO@DKFZ
- List of Technologies
- DKFZ Core Facilities Publication Policy
- Enabling Technology
- Data Science @ DKFZ
- INFORM
- Baden-Württemberg Cancer Registry
- Cooperations & Networks
- National Cooperations
- International Cooperations
- Cooperational Research Program with Israel: DKFZ - MOST in Cancer Research
- Program
- Members of the Program Committee
- Call
- Publication Database
- German-Israeli Cancer Research Schools
- Archive
- Heidelberg - Israel, Science and Culture
- Symposium 40 Years of German-Israeli Cooperation
- 35th Anniversary Symposium
- 34th Meeting of the DKFZ-MOST Program
- 40th Anniversary Publication
- 30th Anniversary Publication
- 20th Anniversary Publication
- Flyer - The Cancer Cooperation Program
- List Publications 1976-2004
- Highlight-Projects
- Cooperational Research Program with Israel: DKFZ - MOST in Cancer Research
- Cooperations with industrial companies
- DKFZ PostDoc Network
- Cross Program Topic RNA@DKFZ
- Cross Program Topic Epigenetics@dkfz
- Cross Program Topic Single Cell Sequencing
- WHO Collaborating Centers
- DKFZ Site Dresden
- Health + Life Science Alliance Heidelberg Mannheim
Epigenetic changes during disease progression in a murine model of human breast cancer
Background:
It is now well accepted that epigenetic alterations contribute to tumorigenesis. DNA methylation has been recognized as an early and possibly initiating event in the development of breast cancer and thus represents a potentially valuable marker for early detection and chemoprevention.
Aims:
In an ongoing project, we aim to characterize DNA methylation changes associated with the development of breast cancer in the C3(1)/SV40 large T antigen transgenic mouse model of mammary carcinogenesis. In various studies both natural products as well as pharmacological agents such as green and black tea or the COX-2 inhibitor celecoxib have been shown to prevent mammary tumor growth in this model.
Preliminary data:
We have established a breed of C3(1)/SV40 large T antigen transgenic mice at the German Cancer Research Center. For DNA methylation analyses, we have collected >250 samples of mammary and tumor tissue from both wildtype (wt) and transgenic (tg) mice at 4-24 weeks of age. We have analyzed methylation changes at a genome-wide level, using methylation-specific DNA array analysis after methyl-CpG immunoprecipitation (MCIp). Hypermethylated DNA of age-matched wt and tg animals was enriched by binding to recombinant methyl-CpG-binding domain protein MBD2. Dual-color labeled samples were then hybridized to Agilent murine CpG island microarrays containing oligonucleotide probes for >16.000 CpG islands. Based on data obtained with tissue derived of animals aged 16-24 weeks, we selected genes commonly hypermethylated in tg mice for subsequent validation by MassARRAY analysis. As an example, a series of five genes showed significant hypermethylation in a range of 52 to 69% in tumor tissue of mice aged 24 weeks, whereas an average methylation of 6 to 15% was detected in mammary tissue of age-matched wt animals. Interestingly, when we analyzed mammary tissue of mice at increasing age, we observed a gradual increase in hypermethylation in tg vs. wt animals for all selected genes, starting at 12-16 weeks of age even before tumors were detectable.
These data indicate a potential early role of deregulated DNA methylation in C3(1)/SV40 large T antigen-induced mammary carcinogenesis. The newly identified genes, which have rarely been mentioned in relation to human breast cancer so far, may serve as interesting targets for chemoprevention studies.
Outlook:
The project will define the role of DNA methylation deregulated during mammary carcinogenesis in the C3(1)/SV40 large T antigen transgenic mouse model. Identified genes/pathways will provide an important basis for future dietary intervention studies and prevention strategies.
Publication:
Heilmann K, Toth R, Bossmann C, Klimo K, Plass C, Gerhauser C. Genome-wide Screen for Differentially Methylated Long Noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as Regulated by Enhancer DNA Methylation with Prognostic Relevance for Human Breast Cancer. Oncogene 2017, 36(46): 6446-6461