Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

DKTK Munich: Phagocytes from the culture dish for cancer therapy

No. 33 | 11/06/2024 | by Koh

Cell-based cancer therapies often fail nowadaystoday because the immune cells are unable to penetrate the tumor efficiently. The use of certain phagocytes is considered a promising alternative - but until now it has not been possible to grow them in sufficient quantities in the culture dish. Researchers from the German Cancer Consortium (DKTK) at the LMU Munich Hospital have now found a solution: Using a transcription factor that can be switched on or off via an activator in the cells' culture medium.

In the DKTK, the German Cancer Research Center (DKFZ) in Heidelberg, as a core center, is joining forces on a long-term basis with university partner sites with special oncological expertise.

© Adobe Stock

Therapies using the patient's own immune cells, which have been armed against the cancer in the culture dish, have already proven to be very effective in some leukemias and lymphomas. For this purpose, the patient's T cells are genetically engineered with receptor molecules that specifically recognize certain characteristics of the tumour cells.

The problem, however, is that these so-called CAR T cells are unable to penetrate solid tumors efficiently, meaning that the therapies are usually ineffective. The solution could be another group of immune cells: certain phagocytes, so-called macrophages, which are part of the innate immune system.

Macrophages have the intrinsic ability to penetrate tumors. They can eliminate pathogens or diseased cells by engulfing them, and they also activate other lines of defense of the immune system. They can also be equipped with targeted receptor proteins against tumor characteristics - but: "Until now, it was impossible to grow phagocytes in the required quantity in the culture dish," explains Philipp Greif, head of a DKTK research group at the LMU Munich Hospital.

As soon as the blood stem cells, from which the phagocytes ultimately emerge, are isolated from their natural environment in the bone marrow, they begin to differentiate into mature blood cells. In this way, however, the "yield" of phagocytes remains too low to use them for medical applications.

A team led by Philipp Greif and Christian Wichmann, LMU Hospital, has now found a solution to this problem: The researchers genetically equipped human blood progenitor cells with the protein MLL-ENL. This abbreviation refers to the fusion of two proteins that together form a cancer-driving transcription factor that promotes cell division in many leukemias.

The DKTK researchers' trick: they equipped MLL-ENL with a controllable domain via which it can be activated with a chemical substance. Experts refer to this as an "inducible" transcription factor. If the blood stem cells were propagated in the culture dish in the presence of the substance, it was possible to grow large quantities of late monocytic blood progenitor cells, precursor stages of the macrophage. As soon as the substance was removed from the culture medium, the scientists were able to stimulate the cells to finally differentiate using suitable stimuli and immune messengers such as interferon-gamma - and they turned out to be functional macrophages.

Analyses of the gene expression of the cells obtained in this way proved that they were extremely similar to natural monocytes, the precursors of macrophages. This was also confirmed by functional tests: the laboratory-induced phagocytes reacted to appropriate cytokines and eliminated bacteria and apoptotic cells.

Macrophages use their Fc receptors to recognize cells that have been marked as foreign by the immune system with antibodies. The phagocytes induced in the culture dish showed precisely this property: they were able to take up and eliminate foreign cells labeled with antibodies.

"Our induced phagocytes have the potential to destroy cancer cells in therapeutic applications by devouring them. The macrophages are to be equipped with a targeted receptor protein in order to direct them specifically against tumor cells. We will now test this option in further preclinical studies using a mouse model," explains Roland Windisch, first author of the current study.

"In this work, we have used inducible transcription factors for the first time to specifically produce large quantities of a certain cell type outside the body. By using other transcription factors, it may also be possible to use this principle to generate different types of blood cells for therapeutic applications in the culture dish," says Christian Wichmann, transfusion physician at LMU Hospital and head of the study. In this way, it may also be possible to produce various other human blood cells on a large scale and provide an alternative to blood donation in the future.

The project is funded by the Else Kröner-Fresenius Foundation (EKFS).

Roland Windisch, Sarah Soliman, Adrian Hoffmann, Linping Chen-Wichmann, Anna Danese, Sebastian Vosberg, Jimena Bravo, Sebastian Lutz, Christian Kellner, Alexander Fischer, Claudia Gebhard, Enric Redondo Monte, Luise Hartmann, Stephanie Schneider, Fabian Beier, Carolin Dorothea Strobl, Oliver Weigert, Matthias Peipp, Michael Schündeln, Stefan H. Stricker, Michael Rehli, Jürgen Bernhagen, Andreas Humpe, Hannes Klump, Christian Brendel, Daniela S. Krause, Philipp A. Greif and Christian Wichmann
Engineering an inducible leukemia-associated fusion protein enables large scale ex vivo production of functional human phagocytes
Proceedings of the National Academy of Sciences (PNAS), USA, 2024, DOI: 10.1073/pnas.2312499121

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS