Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Newly discovered mechanism of T-cell control can interfere with cancer immunotherapies

No. 25 | 03/05/2024 | by Koh

Activated T cells that carry a certain marker protein on their surface are controlled by natural killer (NK) cells, another cell type of the immune system. In this way, the body presumably curbs destructive immune reactions. Researchers from the German Cancer Research Center (DKFZ) and the University Medical Center Mannheim (UMM) now discovered that NK cells can impair the effect of cancer therapies with immune checkpoint inhibitors (ICI) in this way. They could also be responsible for the rapid decline of therapeutic CAR-T cells. Interventions in this mechanism could potentially improve the efficacy of these cellular cancer immunotherapies.

© Adobe Stock

The T cells of the immune system are the main players in the defense against viral infections and tumor cells. On the other hand, they attack the body's own healthy tissue in autoimmune reactions, which can even be fatal. The body must therefore keep a tight control on T cell activity.

A large number of molecules and messenger are involved in the highly complex regulation of T cell activity. Only recently have researchers discovered that another group of immune cells contibutes to the control of T cell activity. Natural killer cells (NK cells) are part of the innate immunity, i.e. the rapid response force that quickly detects and eliminates infected or malignant cells.

"Studies have shown that NK cells can also kill activated T cells and thus limit their proliferation," says Michael Platten, Head of Department at the DKFZ and Director of the Neurological University Clinic Mannheim. "However, until now we did not know which feature characterizes T cells as a target for the NK cell."

When screening activated T cells from healthy donors, Platten's team identified the protein B7H6 as a recognition molecule for NK cell attacks in a new study. Activated T cells from the blood of patients with autoimmune diseases, cancer or viral infections expose large amounts of B7H6 on their surface. Co-culture experiments in the culture dish showed that NK cells recognize the activated T cells by their B7H6 expression. In contrast, T cells whose B7H6 gene was destroyed with the CRISPR-Cas were protected from the lethal attack of the NK cells.

"The elimination of T cells by NK cells is triggered by an intrinsic mechanism of the T cells. The activated T cells temporarily identify themselves as targets for NK-induced cell lysis," explains Michael Kilian, first author of the publication, and adds: "This may limit excessive activation and expansion of T cells as a control mechanism to curb destructive immune responses."

Immune checkpoint inhibitor therapies are neutralized by NK cells
"We now know a number of so-called checkpoint molecules that reduce or enhance the activation of T cells and thus modulate the course of immune reactions. B7H6 can now be classified as a further inhibitory immune checkpoint on T cells," explains study leader Platten.

Some widespread cancer therapies with drugs from the checkpoint inhibitor (ICI) group are targeting certain inhibitory checkpoint molecules. They activate the immune system against the tumor by releasing the immune brakes. Could the B7H6-mediated elimination of tumor-reactive T cells possibly counteract the effect of ICI cancer immunotherapy? The researchers tested this using tissue samples from patients with esophageal cancer who had received ICI therapy. Those patients who had not responded to ICI had a higher number of NK cells in the tumor tissue and actually had a shorter progression-free survival time.

Cellular immunotherapy more effective in the absence of NK cells
Cellular immunotherapies are becoming increasingly important in cancer medicine. For example, some forms of blood cancer are now often treated with so-called CAR-T cells, which are equipped with customized receptors against the cancer. However, the success of therapy is often limited as the number of therapeutic cells in the patient's body declines rapidly.

The therapeutic CAR-T cells also carry B7H6 on the cell surface. Could NK cells be responsible for the rapid decline in their numbers after the start of therapy? Experiments with a humanized mouse model suggest this: if NK cells were added during CAR-T cell treatment of leukaemia, the number of therapeutic cells decreased, while the tumour load increased.

"NK control of T cells has the potential to interfere with various forms of cancer immunotherapy. By specifically intervening in this process, it may be possible to modulate T cell immune responses in the future," explains Michael Platten, head of the current study. With the help of the CRISPR-Cas gene scissors, the researchers now want to protect CAR-T cells from elimination by NK cells in a clinical trial together with the Department of Haematology and Oncology at Heidelberg University Hospital and thus improve the effectiveness of cellular immunotherapy.

M. Kilian et al.: The immunoglobulin superfamiliy ligand B7H6 subjects T cell responses to NK cell surveillance. Science Immunology 2024, DOI: 10.1126/sciimmunol.adj7970

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS