Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Mast cells as a sensor: Enigmatic immune cells help to avoid harmful allergens

No. 37 | 12/07/2023 | by Koh

The function of mast cells, which are part of the immune system, is still a mystery. Scientists at the German Cancer Research Center (DKFZ) have now shown in mice: mast cells function as a sensor that signals the animals to avoid antigens, including harmful allergens, and thereby protect themselves from health-threatening inflammatory reactions. The findings were published in the journal Nature.

Mast Cells
© Vortioxetine/Wikipedia

Mast cells are found primarily in tissues that separate the outside and inside worlds of the body, such as the epithelia of the gastrointestinal tract and lungs. Within the tissues, mast cells often reside near nerve endings. Mast cells are well known to persons suffering from allergies because they secrete messenger substances such as histamine, which cause annoying to health-threatening allergic symptoms. These symptoms occur when mast cells are activated by IgE class antibodies during repeated antigen contact.

"Why mast cells and IgE exist at all has not yet been conclusively explained," says Hans-Reimer Rodewald. The DKFZ immunologist and his team have now been able to show for the first time in mice, in a combination of behavioral experiments and immunological studies, that mast cells act like a sensor that helps to avoid contact with allergens.

No antigen avoidance without mast cells and IgE

The DKFZ researchers immunized mice with the allergen ovalbumin, a protein component of chicken egg white. They then gave the animals the free choice of preferring either normal or egg white-containing drinking water. Immunized animals avoided the egg white-enriched water, while their non-immunized conspecifics clearly preferred it. A large proportion of the immunized animals avoided the egg white-containing water already one day after immunization, some mice even after the first sip.

However, when the scientists performed this behavioral test with mice that genetically lack mast cells, both immunized and non-immunized animals preferred the egg white-containing water. Mice genetically unable to produce IgE also showed no avoidance behavior. Thus, both components - mast cells and IgE - are responsible for antigen avoidance.

When the immunized mice had no choice because the egg white solution was instilled in them, the animals developed inflammation in the stomach and small intestine. "The avoidance behavior mediated by mast cells apparently protects the animals from harmful immune reactions," explains Thomas Plum, one of the first authors.

How do mast cells "talk" to the brain?

An important open question for the scientists was now: How can mast cells, as a component of the immune system, influence behavior? In what ways do immune cells "talk" to the brain? The scientists examined a variety of biologically active substances released by mast cells. These include leukotrienes, pro-inflammatory messengers known to activate sensory nerves. If the researchers blocked leukotriene synthesis, the immunized mice no longer showed the same consequence in avoiding egg white. Leukotrienes therefore appear to be at least partly involved in avoidance behavior. Further immunological and neurobiological experiments are needed in the future to identify the nerve connections through which the mast cell signal is reported to the brain.

"In the intestine, lungs or skin, immune reactions against non-infectious antigens can occur as a result of so-called barrier disorders, permeability of the tissues from the outside to the inside. In the case of allergy, we call such antigens allergens. Whether these substances are dangerous or not, it is important for the organism to avoid their further intake in order to prevent inflammatory diseases. This is an evolutionary advantage and finally a conclusive explanation of the physiological role of mast cells and IgE," Rodewald summarizes the results.

Whether mast cells also contribute to the avoidance of harmful antigens in humans must be adressed in further studies.

Thomas Plum, Rebecca Binzberger, Robin Thiele, Fuwei Shang, Daniel Postrach, Candice Fung, Marina Fortea, Nathalie Stakenborg, Zheng Wang, Anke Tappe-Theodor, Tanja Poth, Duncan MacLaren, Guy Boeckxstaens, Rohini Kuner, Claudia Pitzer, Hannah Monyer, Cuiyan Xin, Joseph V. Bonventre, Satoshi Tanaka, David Voehringer, Pieter Vanden Berghe, Jessica Strid, Thorsten B. Feyerabend & Hans-Reimer Rodewald: Mast cells link immune sensing to antigen avoidance behaviour

Nature 2023, DOI: https://www.nature.com/articles/s41586-023-06188-0.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS