Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Metabolic enzyme protects proteins with sulfur

No. 07c | 07/02/2023 | by Koh

In the cell, additional sulfur atoms are attached to many proteins. Scientists at the German Cancer Research Center have now, for the first time, found the enzyme responsible for transferring the sulfur. They also have clues to the function of the previously mysterious sulfur attachment: it can protect proteins from oxidative damage. Metabolically active tumor cells in particular, which are often exposed to free radicals, could possibly escape cell death through sulfur attachment.

© T. Dick / DKFZ

After their assembly from single amino acids, the function of most proteins in the cell is regulated by chemical labels. In this process, the chemical groups are only temporarily attached to a protein. Probably the best known example is protein phosphorylation: certain enzymes (kinases) transfer phosphate groups to target proteins, while other enzymes (phosphatases) remove them again. The degree of phosphorylation determines the activity of the protein.

Another very common marker, known as protein persulfidation, was discovered only a few years ago. Here, the amino acid cysteine, a component of almost all proteins, carries an additional sulfur atom. The resulting persulfide group (-S-S-H) is normally lost when proteins are isolated from a cell for examination. Only with special precautions can persulfide groups be conserved and detected. Therefore, despite its frequency, this type of modification has not been noticed for a long time.

Why proteins are persulfidated is puzzling and is of increasing interest to scientists. This is because protein persulfidation increases under stress conditions. And a cell's ability to persulfide proteins appears to weaken with age. However, the fundamental question remains unresolved: Which enzyme is responsible for protein persulfidation?

Researchers led by Tobias Dick at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now identified for the first time an enzyme in human cells that causes the persulfidation of proteins. It is an enzyme of the sulfur metabolism called mercaptopyruvate sulfur transferase (MPST), which was previously associated with other functions. Brandan Pedre and Deepti Talwar of DKFZ, joint first authors of the current publication, discovered that MPST is highly efficient at transferring sulfur atoms to other proteins. When they turned off MPST in human cells, persulfidation disappeared on dozens of proteins, most interestingly on those that serve to protect the cell.

What is the function of protein persulfidation? Results obtained by DKFZ researchers last year already provide a clue. This is because persulfides also exist in the form of small molecules derived from the free amino acid cysteine. As Tobias Dick's research group has already been able to show, these small persulfides are excellent radical scavengers. They act on the cell membrane and protect it from oxidative damage. The researchers now suspect that proteins are equipped with persulfide groups to specifically protect them from damage as well. Persulfidation could also cause additional activation of protective proteins, similar to phosphorylation. These possibilities are now being further investigated.

Protein persulfidation is also of interest for cancer research. Tumor cells, which are particularly metabolically active, are often exposed to free radicals. To survive, they must prevent ferroptosis, a type of cell death triggered by radicals. Protein persulfidation could promote tumor cell survival and thus would also be a potential target for future drugs.

Pedre B, Talwar D, Barayeu U, Schilling D, Luzarowski M, Sokolowski M, Glatt S, Dick TP: 3-Mercaptopyruvate sulfur transferase is a protein persulfidase.
Nature Chemical Biology 2023, DOI: 10.1038/s41589-022-01244-8.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS