Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

How stressed tumor cells escape cell death: new mechanism discovered

No. 51 | 19/09/2022 | by TD/Koh

Because of their highly active metabolism, many tumors are susceptible to a special type of cell death, ferroptosis. Nevertheless, cancer cells often manage to escape this fate. Scientists at the German Cancer Research Center have now discovered a new mechanism by which normal as well as cancer cells protect themselves against ferroptosis. Knowledge of these molecular connections could provide new starting points for the treatment of tumors.

A model of a cystein persulfide molecule
© Uladzimir Barayeu / DKFZ

A cell dies of ferroptosis when free radicals get out of control and destroy the protective cell membrane in a chain reaction. Healthy cells are occasionally affected when they come under oxidative stress. But cancer cells in particular are susceptible to ferroptosis due to their highly active metabolism - yet many of the malignant cells escape this fate. Researchers worldwide are searching for the factors that make a cell susceptible or resistant to ferroptosis in order to potentially influence this type of cell death therapeutically. Researchers led by Tobias Dick at the German Cancer Research Center have now discovered a new, unexpected mechanism by which cells protect themselves from ferroptosis.

It has only recently become known that human cells can produce so-called persulfides from the sulfur-containing amino acid cysteine. These small molecules are characterized by a group of two sulfur atoms and one hydrogen atom. However, the importance of persulfides inside the cell was mysterious from the beginning and remained unknown.

Uladzimir Barayeu of DKFZ, first author of the current publication, observed that cells boost their production of persulfides as soon as they are stressed by radicals and are at risk of ferroptotic cell death. This was the first indication that cells try to protect themselves with persulfides. The research team showed that persulfides efficiently suppress membrane damage and ferroptosis and also disclosed the mode of action of these molecules: Persulfides proved to be highly efficient radical scavengers. They interrupt the destructive chain reaction that threatens the integrity of the cell membrane.

The action of persulfides is based on an unusual chemical mechanism. When a persulfide encounters a free radical, it takes on its radical character, thus becoming a radical itself. But the new radical behaves in an unusual way. Unlike other radicals, it is extremely inert and incapable of causing damage. It reacts exclusively with itself and produces persulfides again in a subsequent reaction. This means that persulfides hardly consume themselves in the elimination of free radicals. Therefore, even a very low concentration of persulfides can effectively eliminate a much higher concentration of radicals, as the researchers found to their surprise.

The Heidelberg scientists also showed that a cell's ferroptosis sensitivity depends on certain enzymes of sulfur metabolism that generate persulfides. "Our new results could open up completely new starting points for attacking the internal resistance of cancer cells, for example by pharmacological inhibitors of the enzymes responsible for persulfide production," says Tobias Dick, senior author of the current publication.

The research project is part of the DFG-funded priority program SPP 2306 "Ferroptosis: from basic research to clinical application".

Publication:
Barayeu U, Schilling D, Eid M, Xavier da Silva TN, Schlicker L, Mitreska N, Zapp C, Gräter F, Miller AK,Kappl R, Schulze A, Friedmann Angeli JP, Dick TP (2022) Persulfides inhibit lipid peroxidation and ferroptosis by scavenging radicals. Nature Chemical Biology, doi: 10.1038/s41589-022-01145-w

A picture is available for download:
https://www.dkfz.de/de/presse/pressemitteilungen/2022/bilder/Persulfid.png 

Caption: A model of a cystein persulfide molecule

Note on use of images related to press releases
Use is free of charge. The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) permits one-time use in the context of reporting about the topic covered in the press release. Images have to be cited as follows: "Source: Uladzimir Barayeu / DKFZ ".
Distribution of images to third parties is not permitted unless prior consent has been obtained from DKFZ's Press Office (phone: ++49-(0)6221 42 2854, E-mail: presse@dkfz.de). Any commercial use is prohibited.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS