Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

The wrong track: how papillomaviruses trick the immune system

No. 46 | 04/08/2020 | by Thiel

Specific antibodies protect us against viral infections – or do they not? Researchers at the German Cancer Research Center (DKFZ) studied the immune response to papillomaviruses in mice and discovered a hitherto unknown mechanism by which the pathogens outwit the immune system: At the beginning of the infection cycle, they produce a longer version of a protein that surrounds the viral genome. The body produces antibodies against this protein, but they are not effective in fighting the pathogen.

Papillomaviruses in the stratum corneum of a skin tumor of a Mastomys coucha
© Michelle Neßling/DKFZ

The human immune system has a wide variety of defense strategies to protect the body against pathogens, one of which involves producing antibodies to fight viruses and bacteria. Over time, however, these pathogens have developed elaborate ways of escaping the immune system.

Scientists are already aware of some of these strategies. In human papillomaviruses (HPV), however, up until now they have only known about such strategies in innate, already present immunity and not in adaptive immunity, which does not develop until pathogens enter the body and is associated with the production of antibodies.

Frank Rösl and his co-workers from DKFZ under the supervision of Daniel Hasche have now discovered a new mechanism by which cutaneous papillomaviruses (specific to the skin) trick the immune system.

Certain cutaneous HPV, such as HPV5 and HPV8, occur as natural infections on the skin. They are not sexually transmitted, but are passed on from the mother to the newborn child. Thus, family members are usually colonized with the same HPV types. An infection normally goes unnoticed, because the body is able to overcome it. Depending on the individual status of a person's immune system, their genetic predisposition, age, and other external factors such as UV radiation, however, certain cutaneous HPV types are able to stimulate cell division in their host cells. This leads to skin changes and in rare cases to development of a squamous cell carcinoma, also known as fair-skin cancer.

The experiments were conducted in a particular mouse species, Mastomys coucha, which, like humans, can become infected with cutaneous papillomaviruses shortly after birth and produce specific antibodies against the virus. In combination with UV radiation, infected animals are more likely to develop squamous cell cancer.

The animals' immune system produces antibodies against the two viral proteins L1 and L2 that make up the virus particles, also called capsids. These antibodies can prevent the viruses from entering the host cells and thus neutralize the virus. However, the experiments carried out by the DKFZ scientists showed that besides the normal L1 protein, the viruses also produce a longer version. The latter is not able to actually take part in forming the viral capsid. Instead, it acts as a kind of bait against which the immune system directs its response and produces specific antibodies.

However, the scientists were able to demonstrate that these antibodies are not effective in fighting the papillomavirus. Instead of neutralizing the infectious pathogen through binding to L1, the antibodies merely bind the nonfunctional protein used as bait. While the immune system is busy producing these non-neutralizing antibodies, the virus can continue to replicate and spread throughout the body. It take several more months before neutralizing antibodies are produced that target the normal L1 protein and ultimately the infectious viruses themselves.

"In both rodents and humans, in almost all HPV types that can cause cancer, the L1 gene is designed such that a longer version of the protein can be produced. This is also true for high-risk HPV types such as HPV16 and HPV18, which can cause cervical cancer. It therefore appears to be a common mechanism that enables the viruses to replicate and spread efficiently during the early stage of infection", Daniel Hasche explained. "The fact that antibodies against papillomaviruses can be detected is therefore not necessarily associated with protection against infection. This will need to be taken into account in future when evaluating and interpreting epidemiological studies," Frank Rösl added.

The present study was funded by the Wilhelm Sander Foundation (2018.093.1 and 2010.019.1), the German Federal Ministry of Education and Research (BMBF, 031L0095B), and the China Scholarship Council (CSC).

Yingying Fu, Rui Cao, Miriam Schäfer, Sonja Stephan, Ilona-Braspenning-Wesch, Laura Schmitt, Ralf Bischoff, Martin Müller, Kai Schäfer, Sabrina E. Vinzón, Frank Rösl and Daniel Hasche: Expression of different L1 isoforms of Mastomys natalensis papillomavirus as amechanism to circumvent adaptive immunity. eLife 2020, https://doi.org/10.7554/eLife.57626

A photo is available for download:
www.dkfz.de/de/presse/pressemitteilungen/2020/bilder/Striking-Image.jpg 
Picture caption: Papillomaviruses in the stratum corneum of a skin tumor of a Mastomys coucha

Note on use of images related to press releases
Use is free of charge. The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) permits one-time use in the context of reporting about the topic covered in the press release. Images have to be cited as follows: "Source: Michelle Neßling/DKFZ".
Distribution of images to third parties is not permitted unless prior consent has been obtained from DKFZ's Press Office (phone: ++49-(0)6221 42 2854, E-mail: presse@dkfz.de). Any commercial use is prohibited.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS