Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Artificial intelligence helps to better assess treatment response of brain tumors

No. 21 | 03/04/2019 | by Koh

A team from Heidelberg University Hospital and the German Cancer Research Centre has developed a new method for the automated image analysis of brain tumors. In their recent publication, the authors show that machine learning methods carefully trained on standard magnetic resonance imaging (MRI) are more reliable and precise than established radiological methods in the treatment of brain tumors. Thus, they make a valuable contribution to the individualized treatment of tumors. In addition, the validated method is an important first step towards the automated high-throughput analysis of medical image data of brain tumors.
Joint press release of the German Cancer Research Center and the University Hospital Heidelberg

MRI scans during the course of the disease in a patient with glioblastoma
© P. Kickingereder / Universitätsklinikum Heidelberg

Gliomas are the most common and most malignant brain tumors in adults. In Germany, approximately 4,500 people are diagnosed with a glioma every year. The tumors often cannot be completely removed by surgery. Chemotherapy or radiotherapy are only effective to a limited extent because the tumors are highly resistant. New and precisely validated treatment approaches are therefore urgently needed.

One of the essential criteria for the precise assessment of the efficacy of a new therapy for brain tumors is the growth dynamic, which is determined by MRI. However, the manual measurement of tumor expansion in two planes in the contrast-enhanced MRI scans is prone to errors and leads to slightly different results. "This can have a negative effect on the assessment of therapy response and hence the reproducibility and precision of scientific statements based on imaging," explains Martin Bendszus, Medical Director of the Department of Neuroradiology at the University Hospital in Heidelberg.

In their current study, doctors and scientists from the University Hospital of Heidelberg and the German Cancer Research Center (DKFZ) describe the huge potential of machine learning methods in radiological diagnostics. The team has developed neuronal networks in order to assess and clinically validate the therapeutic response of brain tumors on the basis of MRI in a standardized and fully automated way. A team led by Philipp Kickingereder from the Department of Neuroradiology at Heidelberg University Hospital, researchers from the Division of Medical Image Processing (head: Klaus Maier-Hein) at the German Cancer Research Center and colleagues from the National Center for Tumor Diseases (NCT) and the Neurological Department of the University Hospital Heidelberg (Medical Director: Wolfgang Wick) worked together on this project.

Using a reference database with MRI scans of almost 500 brain tumor patients at Heidelberg University Hospital, the algorithms were able to automatically recognize and localize brain tumors using artificial neural networks. In addition, the algorithms were trained to volumetrically measure the individual areas (contrast medium-absorbing tumor portion, peritumoral edema) and to precisely assess the response to therapy.

The results were validated in cooperation with the European Organization for Research and Treatment of Cancer (EORTC). "The evaluation of more than 2,000 MRI scans of 534 glioblastoma patients from all over Europe shows that our computer-based approach allows a more reliable assessment of therapy response than the conventional method of manual measurement. We were able to improve the reliability of the assessment by 36 percent. This can be crucial for the image-based assessment of therapy efficacy in clinical trials. The prediction of overall survival was also more precise with our new method," explains Kickingereder.

The goal of the Heidelberg physicians and scientists is to use the promising technology for the standardized and fully automated assessment of the therapy response of brain tumors as quickly as possible in clinical studies and, in future, also in clinical routine. In addition, the researchers designed and evaluated a software infrastructure that enables the complete integration of the new technique into existing radiological infrastructure. "In this way, we are creating the prerequisites for broad application and fully automated processing and analysis of MRI scans of brain tumors within a few minutes," explains Klaus Maier-Hein.

The new technology is currently being re-evaluated at the NCT Heidelberg as part of a clinical study to improve the treatment of glioblastoma patients. "For precision therapies, a standardized and reliable assessment of the effectiveness of the new treatment approaches is of outstanding importance. The technology we have developed may be able to make a decisive contribution here," explains Wolfgang Wick.

"With this study, we were able to demonstrate the great potential of artificial neural networks in radiological diagnostics," summarizes Philipp Kickingereder. "In the future, we want to advance the technology for automated high-throughput analysis of medical image data and transfer it not only to brain tumors but also to other diseases such as brain metastases or multiple sclerosis," adds Klaus Maier Hein.

Kickingereder P, Isensee F, Tursunova I, Petersen J, Neuberger U, Bonekamp D, Brugnara G, Schell M, Kessler T, Foltyn M, Harting I, Sahm F, Prager M, Nowosielski M, Wick A, Nolden M, Radbruch A, Debus J, Schlemmer HP, Heiland S, Platten M, von Deimling A, van den Bent MJ, Gorlia T, Wick W, Bendszus M, Maier-Hein KH. Automated quantitative tumor response assessment of MRI in neuro-oncology with artificial neural networks: a multicenter, retrospective study. Lancet Oncology 2019, http://dx.doi.org/10.1016/S1470-2045(19)30098-1

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS