Microarray data analysis with Chipster

13.-15.1.2016 Eija Korpelainen, Massimiliano Gentile chipster@csc.fi

What will I learn?

- How to operate the Chipster software
- How to analyze microarray data
 - Central concepts
 - Analysis workflow
 - What happens in the different analysis steps
- How to design experiments

Microarray data analysis workflow

- Importing data to Chipster
- Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- Annotation
- Pathway analysis
- Clustering
- Saving the workflow

Introduction to Chipster

Chipster

Provides an easy access to over 350 analysis tools

- No programming or command line experience required
- Free, open source software

> What can I do with Chipster?

- analyze and integrate high-throughput data
- visualize data efficiently
- share analysis sessions
- save and share automatic workflows

Chipster

Open source platform for data analysis

Welcome to Chipster

- Home
- Getting access

CSC

- Analysis tool content
- Screenshots
- Manual
- Tutorial videos
- Cite
- FAQ
- Contact
- For developers:
 - Open source project
 - Tool editor

Chipster is a user-friendly analysis software for high-throughput data. It contains over 350 analysis tools for next generation sequencing (NGS), microarray, proteomics and sequence data. Users can save and share automatic analysis workflows, and visualize data interactively using a <u>built-in</u> genome browser and many other visualizations.

Chipster's client software uses Java Web Start to install itself automatically, and it connects to computing servers for the actual analysis. Chipster is open source and the server environment is available as a <u>virtual machine image</u> free of charge. If you would like to use Chipster running on CSC's server, you need a <u>user account</u>.

Launch Chipster v3.6

...or launch with more memory: 3 GB or 6 GB

If you have trouble launching Chipster, read this

News:

- 2.10.2015 Version 3.6 released
- 10.7.2015 Chipster tutorial videos now in YouTube
- 19.8.2014 <u>RNA-seq data analysis guidebook</u> with Chipster instructions

Training:

- 13.-15.1.2016 Expression data analysis, DKFZ Heidelberg
- 1.12.2015 RNA-seq data analysis, University of Helsinki
- · 16.11.2015 RNA-seq data analysis, Cape Town
- 11.11.2015 NGS data analysis, Bari
- · 9.11.2015 RNA-seq data analysis, CSC
- 29.10.2015 <u>RNA-seq data analysis</u>, DPPS
- · 26.-27.10.2015 RNA-seq data analysis, Biomedicum

```
.... Chipster 3.4.0 (build 1441)
```


<u>Eile E</u> dit View Workflow <u>H</u> elp				
Datasets	Analysis tools			
two-sample.tsv	Microarrays NGS Misc	Q	Show	parameters Run 🕨
 column-value-filter.tsv hc.tre kmeans.pdf kmeans.tsv extract.tsv seqs.txt.wee seqs.html annotations.tsv 	 Normalisation Quality control Preprocessing Statistics Clustering Annotation Pathways Promoter analysis 	One sample tests Two groups tests ROTS SAM Several groups tests Linear modelling Linear modelling using user-defined design ma Test proportions	 Tests for com two groups. Ll data is used, i. Other than en unfiltered data 	paring the mean gene expression of PE only works, if the whole normalized e., the data should not be filtered. npiricalBayes might be slow, if run on a.
annotations.html cpdb-pathways.html cpdb-pathways.tsv cpdb-qenes.tsv	 Copy number aberrations Visualisation Utilities 	Correlate with phenodata Correlate miRNA with target expression Time series	▼ More I	help Show tool sourcecode
Washflau	Wandlestin			
	VISUAIISALION		Maximire	P Detach X Close
13 tsv pdf tsv png pdf pdf pdf tsv tsv t tsv html tsv tsv tsv html tsv tsv html	two-sample.tsv 472 kB, Wed Sep 03 06:56:07 EEST 2014 (Click here to add your notes) Analysis history Statistics / Two groups tests Column Pairing Test p-value adjustment method	group EMPTY empirical Bayes BH	Spreads Heatma Kores V Volcance	ap ion profile
	p-value threshold Show NA	0.01 no	Scatter	plot
			Histogr	am external web browser
Connected to chipster.csc.fi		View jobs 0 jo	obs running	Used memory 118M / 870M

Mode of operation Select: data \rightarrow tool category \rightarrow tool \rightarrow run \rightarrow visualize

Job manager

- > You can run many analysis jobs at the same time
- Use Job manager to
 - view status
 - cancel jobs
 - view time
 - view parameters

Gene set test Wed May 20 10:17: Running Cancel Dendrogram Wed May 20 10:17: Completed Illumina Wed May 20 10:16: Completed Filter by coefficient of variation Wed May 20 10:16: Completed NMDS Wed May 20 10:16: Completed PCA Wed May 20 10:16: Completed	Gene set testWed May 20 10:17: RunningCancelDendrogramWed May 20 10:17: CompletedIlluminaWed May 20 10:16: CompletedFilter by coefficient of variationWed May 20 10:16: CompletedNMDSWed May 20 10:16: CompletedPCAWed May 20 10:16: Completed	Tool	Start Time 🗸	Status	Action
Dendrogram Wed May 20 10:17: Completed Illumina Wed May 20 10:16: Completed Filter by coefficient of variation Wed May 20 10:16: Completed NMDS Wed May 20 10:16: Completed PCA Wed May 20 10:16: Completed	DendrogramWed May 20 10:17: CompletedIlluminaWed May 20 10:16: CompletedFilter by coefficient of variationWed May 20 10:16: CompletedNMDSWed May 20 10:16: CompletedPCAWed May 20 10:16: Completed	Gene set test	Wed May 20 10:17: F	Running	Cancel
Illumina Wed May 20 10:16: Completed Filter by coefficient of variation Wed May 20 10:16: Completed NMDS Wed May 20 10:16: Completed PCA Wed May 20 10:16: Completed	Illumina Wed May 20 10:16: Completed Filter by coefficient of variation Wed May 20 10:16: Completed NMDS Wed May 20 10:16: Completed PCA Wed May 20 10:16: Completed	Dendrogram	Wed May 20 10:17: 0	Completed	
 Filter by coefficient of variation Wed May 20 10:16: Completed NMDS Wed May 20 10:16: Completed Wed May 20 10:16: Completed 	Filter by coefficient of variation Wed May 20 10:16: Completed NMDS Wed May 20 10:16: Completed PCA Wed May 20 10:16: Completed	/ Illumina	Wed May 20 10:16: 0	Completed	
NMDS Wed May 20 10:16: Completed	NMDS Wed May 20 10:16: Completed PCA Wed May 20 10:16: Completed	 Filter by coefficient of variation 	Wed May 20 10:16: 0	Completed	
PCA Wed May 20 10:16: Completed	PCA Wed May 20 10:16: Completed	NMDS	Wed May 20 10:16: 0	Completed	
Ter maj zo zotom complete		PCA	Wed May 20 10:16: 0	Completed	

Workflow panel

- Shows the relationships of the files
- You can move the boxes around, and zoom in and out.
- Several files can be selected by keeping the Ctrl key down
- Right clicking on the data file allows you to
 - <u>Save an individual result file ("Export")</u>
 - Delete
 - Link to another data file
 - Save workflow

Workflow – reusing and sharing your analysis pipeline

- You can save your analysis steps as a reusable automatic "macro", which you can apply to another dataset
- When you save a workflow, all the analysis steps and their parameters are saved as a script file, which you can share with other users

Analysis history is saved automatically

-you can add tool source code to reports if needed

솔 History	- • ×
Show for Datasets:	
Step title Applied analysis tool User notes	
Dataset name V Parameters	
Creation date Source code	
Step 4	
Dataset name: hESC.bam	
Created with operation: Alignment / Bowtie2 for single end reads	
Parameter Genome of transcriptome: hg19	
Parameter Quality value format used:obred33	
Parameter How many valid alignments are reported per read: 0	
Parameter Put unaligned reads to a separate file: no	
Parameter Match bonus: 2	
Parameter Maximum penalty for mismatch: 6	
Parameter Penalty for non-ACGTs: 1	
Parameter Gap opening penalty for the reads: 5	
Parameter Gap extension penalty for the reads: 3	
Parameter Gap opening penalty for the reference: 3	
Step 5	
Dataset name: htseq-counts.tsv	
Created with operation: RNA-seq / Count aligned reads per genes with HTSeq	1000
Parameter Organism: Homo_sapiens.GRCh37.68	
Parameter Does the alignment file contain naired, and data; no	1994
Parameter Was the data produced with a strand-specific RNA-seg protocol: no	
Parameter Mode to handle reads overlapping more than one feature: union	
Parameter Minimum alignment quality: 1	
Parameter Feature type to count: exon	
Parameter Feature ID to use: gene_id	
Parameter Add chromosomal coordinates to the count table: yes	()
Save Close	

Technical aspects

Client-server system

- Enough CPU and memory for large analysis jobs
- Centralized maintenance

Easy to install

- Client uses Java Web Start
- Server available as a virtual machine

Analysis sessions

- In order to continue your work later, you have to save the analysis session.
 - Session includes all the files, their relationships and metadata (what tool and parameters were used to produce each file).
- Session is saved into a single .zip file on your computer.
 - In Chipster v3.7 you can also save it on the server
- Session files allow you to continue the analysis on another computer, or share it with a colleague.
- You can have multiple analysis sessions saved separately, and combine them later if needed.

Problems? Send a support request

-request includes the error message and link to analysis session (optional)

Hi, I'm trying to normalise my Illumina microarray data (obtained wi For that purpose I have selected the Normalisation option "Illum: However, the normalisation did not complete successfully.	th the Illumina HT-12 v4.0) ina - lumi pipeline"
Any advice to solve this problem ?	
Thank you in advance for your precious help.	
Best regards	Contact support
<pre>Error message: in library(chiptype, character.only = T) : there is no package called 'Illumina.db'</pre>	Message
<pre>> chipster.common.path = '/opt/chipster/comp/modules/common/R-2. > chipster.module.path = '/opt/chipster/comp/modules/microarray' > setwd("271661a6-946c-450f-bb21-5d5b5a2837aa") > probe.identifier <- "Probe_ID" > transformation <- "log2" > background.correction <- "none" > normalize.chips <- "quantile" > chiptype <- "empty" > # TOOL norm-illumina-lumi.R: "Illumina - lumi pipeline" (Illum BeadSummaryData files, and using lumi methodology. If you have a</pre>	Your email
	OK Cancel

Two types of data visualizations

- 1. Interactive visualizations produced by the client program
 - Select the visualization method from visualization panel icons
 - Save by right clicking on the image
- 2. <u>Static images</u> produced by the analysis tools on the server
 - Select from Analysis tools / Visualisation
 - Save by right clicking on the file name and choosing "Export"

Static images produced by analysis tools

- > MA plot
- MDS plot
- Box plot
- Histogram
- Heatmap
- Idiogram
- Chromosomal position
- Correlogram
- Dendrogram
- K-means clustering
- SOM-clustering
- Dispersion plot
- > etc

Analysis tool overview

- > 150 NGS tools for
 - RNA-seq
 - miRNA-seq
 - exome/genome-seq
 - ChIP-seq
 - FAIRE/DNase-seq
 - MeDIP-seq
 - CNA-seq
 - Metagenomics (16S rRNA)
- > 60 tools for sequence analysis
 - BLAST, EMBOSS, MAFFT
 - Phylip

- > 140 microarray tools for
 - gene expression
 - miRNA expression
 - protein expression
 - aCGH
 - SNP
 - integration of different data

Acknowledgements to Chipster users and contibutors

	More i chipst http://c Chipst 	nfo er@csc.fi chipster.csc er tutorials	.fi in YouTube	- RNA-seq Data Analysis	Chapman & Hall/CRC Mathematical and Computational Biology Series BRAA-Seq Data Abagaa Abbagaa Abbagaa Abagaa Abagaa Abbagaa Abbagaa Abagaa Abbagaa Abbababagaa Abbababagaa Abbagaa Abbagaa Abbagaa Abbagaa Abba
GitHub	This repository Searc	:h	Explore Features	Korp elaine Somervuo, Hu	
chipster	/ chipster			n, Tuimala, ss. and Weng	Eija Korpelainen, Jarno Tuimala, Panu Somervuo, Mikael Huss, and Garry Wong
Chipster is a us	er-friendly analys	is software for high-thr	oughput data.	æ	CRC Press
ি 7,565 c	ommits	🖗 18 branches	123 releases	🏦 14 co	ontributors
۲) که branc	BMC Genomics	MPACT FACTOR 4.21 subject areas advanced Software Chipster: us other high-t M Aleksi Kallio 🖾, Jar Scheinin 🖾, Mikko Ko	search authors reviewers librarie er-friendly analysis hroughput data no T Tuimala 🖾, Taavi Hupponen 🛾 ski 🖾, Janne Kaki 🖾 and Eija I Kor	s about SOftW ⊴, Petri Kl pelainen ≥	my BioMed Central Highly accessed Open Access are for microarray and emela 🖾, Massimiliano Gentile 🖾, Ilari

Microarray data analysis

Microarray data analysis workflow

Importing data to Chipster

- Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- > Annotation
- Pathway analysis
- > Clustering
- > Saving the workflow

Importing data

> Affymetrix

• CEL-files are recognized by Chipster automatically

Illumina: two importing options

- 1. Import the GenomeStudio file as it is
 - All the samples need to be in one file.
 - Need columns AVG, BEAD_STDERR, Avg_NBEADS and DetectionPval
 - When imported this way, the data has to be normalized in Chipster using the lumi method
- 2. Use <u>Import tool</u> to define the sample columns in the file(s)
 - Use the tool "Normalization / Illumina" to normalize the data

\rightarrow The import option influences your normalization options later

- Agilent (and any other tab delimited files)
 - Use Import tool to define the sample columns

1. Import tool: Select what to do

Import

	- 22	
	· • •	
÷		_

Choose how to proceed with each file

A file can be imported directly as it is or you can use the Import tool to define the contents of the file. You can also decide not to import a file at all.

Filename	Detected type	Action
affected1.txt	plain text	Use Import tool
affected2.txt	plain text	Use Import tool
affected3.txt	plain text	Use Import tool
affected4.txt	plain text	Use Import tool
affected5.txt	plain text	Use Import tool
affected6.txt	plain text	Use Import tool
affected7.txt	plain text	Use Import tool
affected8.txt	plain text	Use Import tool
control1.txt	plain text	Use Import tool
control2.txt	plain text	Use Import tool
control3.txt	plain text	Use Import tool
control4.txt	plain text	Use Import tool
control5.txt	plain text	Use Import tool
		Import directly
	and any lot the same stations to all films	Use Import tool
Define file structure once a	and apply the same settings to all files	Don't import

2. Import tool: Define rows (header, title, etc)

🖆 Import tool								_ 🗆 🗙
Tools	Selec	t rows (affect	ed1.txt)			AND - 201111		
	TN	lark header	0	🕒 Mark fo	oter 4	7295 🚔 📄	Mark title row	S Reset
Column Delimiter	Showi	ng columns 5 d	of 9			the later		
Tab		1	2	3	4	5		T
⊖ Space	1	TargetID	MIN_Signal	AVG_Signal	MAX_Signal.			^
O Comma	2	GI_1004708	73.7	73.7	73.7	Click to the	column title row	<u>22</u>
○ Semicolon	3	GI_1004709	312.7	312.7	312.7		column the low	
Other	4	GI_1004709	170.6	170.6	170.6			
	5	GI_1004709	98.0	98.0	98.0			
	6	GI_1004710	354.3	354.3	354.3			
Decimal Separator	7	GI_1004710	213.0	213.0	213.0			
	8	GI_1004712	90.9	90.9	90.9			
Oot.	9	GI_1004712	92.4	92.4	92.4			
🔿 Comma ,	10	GI_1004713	83.8	83.8	83.8			
-	11	GI_10047133-	92.3	92.3	92.3			
	12	GI_1009257	599.3	599.3	599.3			
	13	GI_1009258	99.0	99.0	99.0			
	14	GI_1009259	122.1	122.1	122.1			
	15	GI_1009260	3789.0	3789.0	3789.0			
	16	GI_1009260	85.4	85.4	85.4			
	17	GI_1009260	96.0	96.0	96.0			
	18	GI_1009261	93.8	93.8	93.8			
	19	GI_1009261	455.9	455.9	455.9			
	20	GI_1009261	135.8	135.8	135.8			
	21	GI_1009263	100.0	100.0	100.0			
	22	GI_1009265	71.9	71.9	71.9			
	22	GT 1009266	05.8	05 R	05.8			
	1.4							1.00
Help					¢	Back	Next 🗘 Finish 🕨	Cancel 🔳

3. Import tool: Define columns (identifier, sample)

🛃 Import tool					
Tools	Select columns (affecte	ed1.txt)			
Chip counts 🛞	Identifier Sample Showing rows 100 of 4729	Sample BG Control	Control BG Flag	Annotation Unused	3 Reset
Complete with pattern 🛞	1 - TargetID Identifier	2 - MIN_Signal-1412091085	_A 3 - AVG_Signal-1412091085	5_A 4 - MAX_Signal-1412091 Unused	085_A 5 - N/
Complete the rest Undo	2 GI_10047089-S 3 GI_10047091-S	73.7 312.7	73.7 312.7	73.7 312.7	1.0
Data Modification	4 GI_10047093-S 5 GI_10047099-S	170.6 98.0	170.6 98.0	170.6 98.0	1.0 1.0
Column:	6 GI_10047103-S	354.3	354.3	354.3	1.0
1 - TargetID Look For:	7 GI_10047105-S 8 GI_10047121-S	90.9	213.0 90.9	90.9	1.0
	9 GI_10047123-S	92.4	92.4	92.4	1.0
Replace With:	11 GI_10047133-I	92.3	92.3	92.3	1.0
Use Regular Expressions	12 GI_10092578-S 13 GI 10092585-S	599.3 99.0	599.3 99.0	599.3 99.0	1.0
Replace Undo	14 GI_10092596-S	122.1	122.1	122.1	1.0
	16 GI_10092602-S	85.4	85.4	85.4	Select sample
	17 GI_10092603-S	96.0	96.0 93.8	96.0	1.0
	19 GI_10092616-S	455.9	455.9	455.9	1.0
	20 GI_10092618-S	135.8	135.8	135.8	1.0
	22 GI_10092658-S	71.9	71.9	71.9	1.0
	•	1000			
Help			Back Next	Finish 🕨	Cancel 🔳

Import tool - which columns should I mark?

- http://chipster.csc.fi/manual/import-help.html
- Illumina BeadStudio version 3 file and GenomeStudio files
 - Identifier (ProbeID)
 - Sample (text "AVG")
- Illumina BeadStudio version 1-2 file
 - Identifier (TargetID)
 - Sample (text "AVG")
- > Agilent
 - Identifier (Probe<u>Name</u>)
 - Sample (rMeanSignal or rMedianSignal)
 - Sample background (rBGMedianSignal)
 - Control (gMeanSignal or gMedianSignal)
 - Control background (gBGMedianSignal)
 - Flag (Control type)

Exercise 1. Import Illumina data directly

Import Illumina data <u>directly</u>

- Select File / Import files.
- Select the file IlluminaHuman6v1_BS1.txt
- In the Import files -window choose the action "Import directly"
- Select the file and view it as text.

Normalize the data with the lumi tool

- Select the file and the tool Normalization/ Illumina lumi pipeline.
 Set the chiptype parameter to Human and click Run.
- Inspect the result file normalized.tsv. How does the first column containing identifiers look like?
- Inspect the file phenodata.tsv. How many samples are there?

Exercise 2: Import Illumina data with Import tool

Import the same file <u>using the Import tool</u>

- Select File / Import files and select the file IlluminaHuman6v1_BS1.txt
- In the Import files -window choose the action Use Import tool
- Click the Mark header button and paint the header rows.
- Click the Mark title row button and click on the title row. Click Next.
- Click the Identifier button and click in the TargetID column.
- Click the Sample button and click in a couple of AVG columns. Click the Complete the rest button and check that all the AVG columns were selected.
- Click Finish.
- How many files do you get now? Inspect one of them.

Normalize the data

- Select the 8 files and run Normalization/ Illumina so that:
 - Illumina software version = BeadStudio1
 - identifier type = TargetID
 - chiptype = Human-6v1.
- Inspect the normalized.tsv and phenodata.tsv. Are there differences if compared to the files from exercise 1?

Exercise 3: Import several files with Import tool

- Save the session and start a new one.
 - Select File / Save local session.
 - Select File / New session.
- Import a new dataset containing several files (one for each sample) using the Import tool
 - Select File / Import folder and
 - Select the folder IlluminaTeratospermiaHuman6v1_BS1
 - Choose the action **Use Import tool** for each file
 - Click the Mark title row button and click on the title row. Click Next.
 - Click the **Identifier** button and click in the **TargetID** column.
 - Click the **Sample** button and click in the **AVG** column. Click **Finish**.
 - How many files do you get now?

Importing <u>normalized</u> data

- The data should be tab delimited and preferably log-transformed
 - If your data is not log-transformed, you can transform it with the tool "Change interpretation"
- Import the data file to Chipster using the Import tool. Mark the identifier column and all the sample columns.
- Run the tool <u>Normalize / Process prenormalized.</u> This
 - Converts data to Chipster format by adding "chip." to expression column names
 - Creates the phenodata file. You need to indicate the chiptype using names given at http://chipster.csc.fi/manual/supported-chips.html

Microarray data analysis workflow

Importing data to Chipster

Normalization

- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- > Annotation
- Pathway analysis
- > Clustering
- > Saving the workflow

Normalization

> The goal is to make the arrays comparable to each other

- Makes the expression value distributions similar
- Assumes that most genes don't change expression
- > After normalization the expression values are in log2-scale
 - Hence a fold change of 2 means 4-fold up

Illumina normalization: two analysis tools

1. Illumina

- Normalization method Quantile, vsn (variance stabilizing normalization), scale, none
- Illumina software version
 <u>GenomeStudio or BeadStudio3</u>, BeadStudio2, BeadStudio1
- Chiptype
- Identifier type

Probe ID (for BeadStudio version 3 data and newer), Target ID

2. Lumi pipeline (data needs to be in one file, imported directly!)

- Normalization method <u>Quantile</u>, vsn, rsn (robust spline normalization), loess, none
- Transformation

Log2, vst (variance stabilizing transformation), none

Chiptype

human, mouse, rat

 Background correction (usually done already in GenomeStudio) <u>none</u>, bgAdjust.Affy

Quantile normalization procedure

	Sample A	Sample B	Sample C
Gene 1	20	10	350
Gene 2	100	500	200
Gene 3	300	400	30

Sample A

200

350

Gene 2

Gene 3

1. Raw data

	Sample A	Sample B	Sample C	Median	
Quantile 1	20	10	30	20	
Quantile 2	100	400	200	200	
Quantile 3	300	500	350	350	

Sample C

200

20

Median

2. Rank data within sample and calculate median intensity for each row

3. Replace the raw data of each row with its median (or mean) intensity

4. Restore the original gene order

Quantile 1	20	20	20	20
Quantile 2	200	200	200	200
Quantile 3	350	350	350	350
	Sample A	Sample B	Sample C	
Gene 1	20	20	350	

350

200

Sample B

Normalization of Affymetrix data

> Normalization = background correction + expression estimation + summarization

> Methods

- <u>RMA</u> (Robust Multichip Averaging) uses only PM probes, fits a model to them, and gives out expression values after quantile normalization and median polishing. Works nicely if you have more than a few chips
- **GCRMA** is similar to RMA, but takes also GC% content into account
- MAS5 is the older Affymetrix method, Plier is a newer one
- Li-Wong is the method implemented in dChip

Custom chiptype parameter to use remapped probe information

- Because some of the Affymetrix probe-to-transcript mappings are not correct, probes have been remapped in the Bioconductor project.
- To use these remappings (alt CDF environments), select the matching chiptype from the Custom chiptype menu.
- > Variance stabilization option makes the variance similar over all the chips
 - Works only with MAS5 and Plier (the other methods log2-transform the data, which corrects for the same phenomenon)

Normalization of Agilent data

- Background correction + averaging duplicate spots + normalization
- Background subtraction often generates negative values, which are coded as missing values after log2-transformation.
 - Using normexp + offset 50 will not generate negative values, and it gives good estimates
- Loess removes curvature from the data (recommended)

Agilent normalization parameters in Chipster

Background treatment

• <u>Normexp</u>, Subtract, Edwards, None

Background offset

- <u>50</u> or 0
- Normalize chips
 - Loess, median, none

Chiptype

- You must give this information in order to use annotation-based tools later
- > Normalize genes
 - None, scale (to median), quantile
 - not needed for statistical analysis

Checking normalization

Exercise 4: Normalize Illumina data

- > Select all the files by clicking on the box "13" in the Workflow view
- Select the tool Normalization / Illumina. Set parameters so that
 - Illumina software version = BeadStudio1
 - identifier type = TargetID
 - chiptype = Human-6v1
- Make an unnormalized, log-transformed file to be used as a comparison in exercise 6 when checking the normalization effect
 - Repeat the run as before, but change <u>Normalization method = none</u>
 - Rename the result file to unnormalized.tsv

Microarray data analysis workflow

- Importing data to Chipster
- Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- > Annotation
- Pathway analysis
- > Clustering
- Saving the workflow

Phenodata file

- Experimental setup is described with a phenodata file, which is created during normalization
- > Fill in the group column with numbers describing your experimental groups
 - e.g. 1 = control sample, 2 = cancer sample
 - necessary for the statistical tests to work
 - note that you can sort a column by clicking on its title

Workflow view	Visualisation								
🔍 🔍 Fit 📒	Method: 🥖 Phenodata editor 🗸 🗸 🗸		? Help		🕼 Redraw 🗖 🗖		laximise	🖥 Detach	
17 files	sample	original_name	chiptype	group 🔺	training	description	₽,	Add a new	column:
	microarray010.cel	GSM11805.cel	hgu133a			GSM11805.cel		new colun	op.
	microarray011.cel	GSM11823.cel	hgu133a	1		GSM11823.cel		non_coldin	
Norm - Phe a sea a sea a sea a sea a	microarray012.cel	GSM12075.cel	hgu133a	1		GSM12075.cel			Add
	microarray013.cel	GSM12098.cel	hgu133a	1		GSM12098.cel			
	microarray014.cel	GSM12268.cel	hgu133a	1		GSM12268.cel		Remove co	lumn:
	microarray015.cel	GSM12283.cel	hgu133a	1		GSM12283.cel			-
	microarray016.cel	GSM12300.cel	hgu133a	1		GSM12300.cel			
	microarray017.cel	GSM12444.cel	hgu133a	1		GSM12444.cel		Re	emove
	microarray001.cel	cancerGSM1181	hgu133a	2		cancerGSM11814.cel			
	microarray002.cel	cancerGSM1183	hgu133a	2		cancerGSM11830.cel			
	microarray003.cel	cancerGSM1206	hgu133a	2		cancerGSM12067.cel			
	microarray004.cel	cancerGSM1207	hgu133a	2		cancerGSM12079.cel			
	microarray005.cel	cancerGSM1210	hgu133a	2		cancerGSM12100.cel			
	microarray006.cel	cancerGSM1210	hgu133a	2		cancerGSM12105.cel			
	microarray007.cel	cancerGSM1227	hgu133a	2		cancerGSM12270.cel			
	microarray008.cel	cancerGSM1229	hgu133a	2		cancerGSM12298.cel			

How to describe pairing, replicates, time, etc?

- > You can add new columns to the phenodata file
- How to describe different variables
 - **Time:** Use either real time values or recode with group codes
 - **Replicates:** All the replicates are coded with the same number
 - **Pairing:** Pairs are coded using the same number for each pair
 - Gender: Use numbers
 - Anything else: Use numbers

Creating phenodata for normalized data

- When you import data which has been already normalized, you need to create a phenodata file for it
 - Use Import tool to bring the data in
 - Use the tool Normalize / Process prenormalized to create phenodata
 - Remember to give the chiptype
 - Fill in the group column
- > Note: If you already have a phenodata file, you can import it too
 - Choose "Import directly" in the Import tool
 - Right click on normalized data, choose "Link to phenodata"

Exercise 5: Describe the experiment

- > Double click the phenodata file of the real normalization
- > In the phenodata editor, fill in the group column so that you enter
 - 1 for control samples
 - 2 for teratospermia affected samples
- For the interest of visualizations later on, give shorter names for the samples in the Description column
 - Name the teratospermia samples t1, t2,....t8
 - Name the control samples c1, c2 ,...c5

Microarray data analysis workflow

- Importing data to Chipster
- Normalization
- Describing samples with a phenodata file

Quality control

- Array level
- Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- > Annotation
- Pathway analysis
- > Clustering
- Saving the workflow

Array level quality control

- > Allows you to check if arrays are comparable to each other
- Tools in Chipster
 - Illumina: density plot and boxplot
 - Agilent 1-color: density plot and boxplot
 - Agilent 2-color: MA-plot, density plot and boxplot
 - Affymetrix basic: RNA degradation and Affy QC
 - Affymetrix RLE and NUSE: fit a model to expression values

Density plot and box plot

Agilent QC: MA-plot

- > Scatter plot of log intensity ratios M=log2(R/G) versus average log intensities $A = log2 \sqrt{(R^*G)}$, where R and G are the intensities for the sample and control, respectively
- > M is a mnemonic for \underline{m} inus, as M = log R log G
- > A is mnemonic for <u>a</u>dd, as $A = (\log R + \log G) / 2$

Affymetrix QC

Several options

- Affymetrix QC metrix
- RNA degradation
- Spike-in controls linearity
- RLE (relative log expression)
- NUSE (normalized unscaled standard error plot)

Note that Affymetrix array level QC tools are run on <u>raw</u> data (CEL files), not on normalized data

2 э -3 -2 -1 0 1

Affymetrix spike-ins and RNA degradation

Spike-in linearity

RNA degradation plot

Affymetrix: RLE and NUSE

RLE (relative log expression)

NUSE (normalized unscaled standard error)

Exercise 6: Illumina array level quality control

- Run <u>Quality control / Illumina</u> for the normalized data
- Repeat this for the file unormalized.tsv and compare the results (use the Detach button to view the images side by side). Can you see the effect of normalization?

Microarray data analysis workflow

- Importing data to Chipster
- Normalization
- Describing samples with a phenodata file

Quality control

- Array level
- Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- > Annotation
- Pathway analysis
- > Clustering
- Saving the workflow

Experiment level quality control

- Getting an overview of similarities and dissimilarities between samples allows you to check
 - Do the experimental groups separate from each other?
 - Is there a confounding factor (e.g. batch effect) that should be taken into account in the statistical analysis?
 - Are there sample outliers that should be removed?

Several methods available

- NMDS (non-metric multidimentional scaling)
- PCA (principal component analysis)
- Clustering
- Dendrogram
- Correlogram

Non-metric multidimensional scaling (NMDS)

Goal is to reduce dimensions from several thousands to two

- High dimensional space is projected into a 2-dimensional space
- Check that the experimental groups separate on dimension 1
 - Do the samples separate according to something else on dimension 2?

> Method

- Computes a distance matrix for all genes
- Constructs the dimensions so that the similarity of distances between the original and the 2-dimensional space is maximized

NMDS

Principal component analysis (PCA)

Goal is to reduce dimensions

- High dimensional space is projected into a lower dimensional space
- Check the percentage of variance explained by each component
 - If PC2 explains only a small percentage of variance, it can be ignored.

Method

- Computes a variance-covariance matrix for all genes
- PC1, the first principal component, is the linear combination of variables that maximizes the variance
- PC2 is a linear combination orthogonal to the previous one which maximizes variance.

• etc

PCA illustration

PCA illustration, continued

Dendrogram and correlogram

Dendrogram (2 groups)

Labels

groups

0.05

8

2

Correlogram

Exercise 7: Experiment level quality control

- Run <u>Statistics / NMDS</u> for the normalized data
 - Do the groups separate along the first dimension?
- ➢ Run <u>Statistics / PCA</u> on the normalized data.
 - View pca.tsv as 3D scatter plot for PCA. Can you see 2 groups?
 - Check in **variance.tsv** how much variance the first principal component explains? And the second one?
- Run <u>Visualization / Dendrogram</u> for the normalized data
 - Do the groups separate well?
- Save the analysis session with name sessionTeratospermia.zip

Microarray data analysis workflow

- Importing data to Chipster
- > Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level

Filtering (optional)

- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- Annotation
- Pathway analysis
- > Clustering
- Saving the workflow

Filtering

> Why?

 Reducing the number of genes tested for differential expression reduces the severity of multiple testing correction of p-values. As the p-values remain better, we detect more differentially expressed genes.

> Why not?

• Some statistical testing methods (inc. the emprical Bayes option in Chipster) need many genes, because they estimate variance by borrowing information from other genes which are expressed at similar level. Hence the more genes the better.

Filtering should

- remove genes which don't have any chance of being differentially expressed: genes that are not expressed or don't change
- be independent: should not use the sample group information

Filtering tools in Chipster

- Filter by standard deviation (SD)
 - Select the percentage of genes to be filtered out
- Filter by coefficient of variation (CV = SD / mean)
 - Select the percentage of genes to be filtered out

Filter by flag

• Flag value and number of arrays

Filter by expression

- Select the upper and lower cut-offs
- Select the number of chips required to fulfil this rule

Filter by interquartile range (IQR)

• Select the IQR

Exercise 8: Filtering

Select the normalized data and play with the SD filter and CV filter.

- Set the cutoffs so that you filter out 90% of genes (Percentage to filter out = 0.9).
- Preprocessing / Filter by SD
- Preprocessing / Filter by CV
- Select the result files and compare them using the interactive Venn diagram visualization
 - Save the genes specific to SD filter to a new file. Rename it sd.tsv.
 - Save the genes specific to CV filter to a new file. Rename it cv.tsv.
 - View both as expression profiles. Is there a difference in expression levels of the two sets?

Microarray data analysis workflow

- Importing data to Chipster
- > Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)

Statistical testing

- Parametric and non-parametric tests
- Linear modeling
- Multiple testing correction
- Annotation
- Pathway analysis
- > Clustering
- Saving the workflow

Statistical analysis: Why?

- Distinguish the treatment effect from biological variability and measurement noise
 - replicates
 - estimation of uncertainty (variability)

Generalisation of results

- representative sample
- statistical inference

Parametric statistical methods

- Comparing means of 1-2 groups
 - student's t-test
- Comparing means of more than 2 groups
 - 1-way ANOVA

> Comparing means in a multifactor experiment

• 2-way ANOVA

Parametric statistics

Non-parametric statistical methods

Ranks					
group A	group B				
1	4				
2	6				
3	7				
5	9				
8	10				

$$U_1 = n_1 * n_2 + \frac{n_1 * (n_1 + 1)}{2} - R_1$$

 $U_2 = n_1 * n_2 + \frac{n_2 * (n_2 + 1)}{2} - R_2$

Non-parametric compared to parametric tests

Benefits

- Do not make any assumptions on data distribution
 - \Rightarrow robust to outliers
 - \Rightarrow allow for cross-experiment comparisons

Drawbacks

- Lower power than parametric counterpart
- Granular distribution of calculated statistic
 - \Rightarrow many genes get the same rank
 - \Rightarrow requires at least 6 samples / group

How to improve statistical power?

Need more accurate estimates of variability and effect size

Improved analysis methods

- Variance shrinking: Empirical Bayes method
- Partitioning variability: ANOVA, linear modeling

Improved experimental design

- Increase number of biological replicates
- Use paired samples if possible
- Randomization
- Blocking

Pairing = matched samples from the same individual

Unpaired analysis

Paired analysis

	Before	After
	2	3
	2	4
	3	2
	1	3
Mean	2	3
Stdev	0.8	0.8

Before	After	Difference
2	3	1
2	3	1
3	4	1
1	2	1

One sample T-test

Improving power with variance shrinking

- Concept
 - Borrow information from other genes which are expressed at similar level, and form a pooled error estimate

> How?

- models the error intensity dependence by comparing replicates
- uses a smoothing function to estimate the error for any given intensity
- calculates a weighted average between the observed gene specific variance and the model-derived variance (pooling)
- incorporates the pooled variance estimate in the statistical test (usually t- or F-test)

Available in Chipster

- Two group test: Select empirical Bayes as the test
- Linear modeling tool

Microarray data analysis workflow

- Importing data to Chipster
- > Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)

Statistical testing

- Parametric and non-parametric tests
- Linear modeling
- Multiple testing correction
- Annotation
- Pathway analysis
- > Clustering
- Saving the workflow

Linear modeling

Models the expression of a gene as a linear combination of explanatory factors (e.g. group, gender, time, patient,...)

 $y = a + (b \cdot group) + (c \cdot gender) + (d \cdot group \cdot gender)$

- y = gene's expression
- a, b, c and d = parameters estimated from the data
- a = intercept (expression when factors are at "reference" level)
- b and c = main effects
- d = interaction effect

Taking multiple factors into account

1 factor: treatment

	Control	Treatment
	2	5
	9	7
	1	3
	7	5
	8	4
	3	6
Mean	5	5

2 factors: treatment and gender

	Control	Treatment
	2	6
Males	3	7
	1	5
Mean	2	6
	8	4
Females	9	5
	7	3
Mean	8	4

Linear modeling: Interaction effect

Linear modeling tool in Chipster

- Linear modeling tool in Chipster can take into account
 - 3 main effects
 - Their interactions
 - Pairing
 - Technical replication (one sample is hybridized to several arrays)

Main effects can be tested as

- Linear = is there a trend towards higher numbers?
- Factor = are there differences between the groups?

If the main effect has only two levels (e.g. gender), selecting linear or factor gives the same result

Note that the result table contains all the genes, so to get the differentially expressed genes you have to filter it

- Use the tool Filter using a column value
- Select the p.adjusted column that corresponds to the comparison of your interest

Microarray data analysis workflow

- Importing data to Chipster
- > Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)

Statistical testing

- Parametric and non-parametric tests
- Linear modeling
- Multiple testing correction
- Annotation
- Pathway analysis
- Clustering
- Saving the workflow

Multiple testing correction

Problem: When thousands of genes are tested for differential expression, a gene can get a good p-value just by chance.

```
1 gene, \alpha = 0.05

\Rightarrow false positive incidence = 1 / 20
```

```
30 000 genes, \alpha = 0.05

\Rightarrow false positive incidence = 1500
```

Solution: Correct the p-values for multiple testing. Methods:

- Bonferroni
- Holm (step down)
- Westfall & Young
- Benjamini & Hochberg

more false negatives

more false positives

Benjamini & Hochberg method (BH)

How does it work?

- rank p-values from largest to smallest
- largest p-value remains unaltered
- second largest p-value = p * n / (n-1)
- third largest p-value = p * n / (n-2)
- .
- smallest p-value = p * n / (n-n+1) = p * n

- We can reduce the severity of multiple testing correction by reducing the number of genes tested (n)
 - use independent filtering
- The adjusted p-value is FDR (false discovery rate)
 - Tells what proportion of <u>results</u> can be false positives

Exercise 9: Statistical testing

Run different two group tests

- Select the file cv-filter.tsv_and Statistics / Two group test. What is the default value of parameter test? How many differentially expressed genes do you get?
- Repeat the run but change test = t-test. Rename the result file to t.tsv. How many differentially expressed genes do you get now?
- Repeat the run but change test = Mann-Whitney. Rename the result file to MW.tsv. How many differentially expressed genes do you get now?

Compare the results with a Venn diagram

- Which method seems most powerful?
- Select the genes common to all three datasets and create a new dataset.

Exercise 10: Visualize and filter results

- View the Empirical Bayes result as an interactive volcano plot and filter genes based on visual selection
 - Select the two-sample.tsv and visualization method Volcano plot
 - Draw a box around the genes whose log2 FC > 3 and create a new dataset from this selection.
 - Visualize the new file as **Expression profile**

- Filter genes based on fold change using an analysis tool
 - Select two-sample.tsv and the tool Preprocessing / Filter using a column value. Keep genes whose log2 FC > 3:
 - Column = FC
 - Cut-off = 3
 - Smaller or larger = larger-than.

Microarray data analysis workflow

- Importing data to Chipster
- > Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction

Annotation

- Pathway analysis
- > Clustering
- Saving the workflow

Annotation

- Gene annotation = information about biological function, pathway involvement, chromosal location etc
- Annotation information is collected from different biological databases to a single database by the Bioconductor project
 - Bioconductor provides annotation packages for many microarrays
- Annotation package is required by many analysis tools
 - Annotation, GO/KEGG enrichment, promoter analysis, chromosomal plots
 - These tools don't work for those chiptypes which don't have Bioconductor annotation packages

Annotations for the selected gene list

Probe	Symbol	Description	Chromosome	Chromosome Location	GenBank	Gene	Cytoband	UniGene	PubMed	Gene Ontology	Pathway
<u>205626 s at</u>	CALB1	calbindin 1, 28kDa	8	-91140013	<u>NM 004929</u>	<u>793</u>	<u>8q21.3-</u> <u>q22.1</u>	<u>Hs.65425</u>	22	locomotory behavior cytoplasm vitamin D binding calcium ion binding protein binding	
<u>220281_at</u>	SLC12A1	solute carrier family 12 (sodium/potassium/chloride transporters), member 1	15	46285789	<u>AI632015</u>	<u>6557</u>	<u>15q15-</u> <u>q21.1</u>	<u>Hs.123116</u>	<u>13</u>	ion transport potassium ion transport sodium ion transport chloride transport membrane fraction plasma membrane membrane integral to membrane transporter activity sodium:potassium:chloride symporter activity symporter activity potassium ion binding sodium ion binding	
<u>206054 at</u>	KNG1	kininogen 1	3	187917813	<u>NM 000893</u>	3827	<u>3q27</u>	<u>Hs.77741</u>	<u>86</u>	smooth muscle contraction inflammatory response negative regulation of cell <u>adhesion</u> elevation of cytosolic calcium <u>ion concentration</u> blood coagulation diuresis natriuresis natriuresis negative regulation of blood <u>coagulation</u> vasodilation positive regulation of <u>apoptosis</u> extracellular region <u>cysteine protease inhibitor</u> <u>activity</u> receptor binding heparin binding zinc ion binding	Complement and coagulation cascades
										<u>behavior</u> <u>gamma-aminobutyric acid</u> <u>catabolic process</u> neurotransmitter catabolic	Glutamate

Alternative CDF environments for Affymetrix

- > CDF is a file that links individual probes to gene transcripts
- Affymetrix default annotation uses old CDF files that map many probes to wrong genes
- Alternative CDFs fix this problem
- In Chipster selecting "custom chiptype" in Affymetrix normalization takes altCDFs to use

For more information see

- Dai et al, (2005) Nuc Acids Res, 33(20):e175: Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data
- http://brainarray.mbni.med.umich.edu/Brainarray/Database/Cust omCDF/genomic_curated_CDF.asp

Also a problem with Illumina

- Probes are remapped in the R/Bioconductor project
- Chipster uses remapped probes
- For more information see
 - Barbosa-Morais NL, Dunning MJ, Samarajiwa SA, Darot JFJ, Ritchie ME, Lynch AG, Tavaré S. "A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data". Nucleic Acids Research, 2009 Nov 18, doi:10.1093/nar/gkp942
 - https://prod.bioinformatics.northwestern.edu/nuID/

Exercise 11: Annotation

Annotate genes

- Select the file column-value-filter.tsv
- Run **Annotation / Illumina gene list** so that you include the FC and p-value information to the result file
- Open the result file **annotations.html** in external browser and explore the NASP gene by clicking on the link in the Gene column. Find the LEP gene and read about the JAK-STAT signaling pathway by clicking on the link in the pathway column.

Microarray data analysis workflow

- Importing data to Chipster
- > Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- > Annotation
- Pathway analysis
- > Clustering
- > Saving the workflow

Pathway analysis – why?

- Statistical tests can yield thousands of differentially expressed genes
- It is difficult to make "biological" sense out of the result list
- Looking at the bigger picture can be helpful, e.g. which pathways are differentially expressed between the experimental groups
- Databases such as KEGG, GO, Reactome and ConsensusPathDB provide grouping of genes to pathways, biological processes, molecular functions, etc

> Two approaches to pathway analysis

- Gene set enrichment analysis
- Gene set test

Approach I: Gene set enrichment analysis

- 1. Perform a statistical test to find differentially expressed genes
- 2. Check if the list of differentially expressed genes is "enriched" for some pathways

Approach II: Gene set test

- 1. Do NOT perform differential <u>gene</u> expression analysis
- 2. Group genes to pathways and perform differential expression analysis <u>for</u> <u>the whole pathway</u>
- Advantages
 - More sensitive than single gene tests
 - Reduced number of tests
 → less multiple testing correction
 - \rightarrow increased power

ConsensusPathDB

One-stop shop: Integrates pathway information from 32 databases covering

- biochemical pathways
- protein-protein, genetic, metabolic, signaling, gene regulatory and drug-target interactions
- Developed by Ralf Herwig's group at the Max-Planck Institute in Berlin
- ConsensusPathDB over-representation analysis tool is integrated in Chipster
 - runs on the MPI server in Berlin

GO (Gene Ontology)

- Controlled vocabulary of terms for describing gene product characteristics
- > 3 ontologies
 - Biological process
 - Molecular function
 - Cellular component

Hierarchical structure

■ all : all [841457 gene products]

- - - - ☑ GO:0048518 : positive regulation of biological process [42078 gene products]
 - - - - - ☑ I GO:0045860 : positive regulation of protein kinase activity [2860 gene products]
 - ∃ GO:0032147 : activation of protein kinase activity [1745 gene products]
 - ⊞ GO:0000185 : activation of MAPKKK activity [82 gene products]
 - ☑ GO:0071902 : positive regulation of protein serine/threonine kinase activity [1815 get]
 - ⊞ GO:0000185 : activation of MAPKKK activity [82 gene products]
 - ∃ GO:0010562 : positive regulation of phosphorus metabolic process [6341 gene products]

KEGG

- Kyoto Encyclopedia for Genes and Genomes
- Collection of pathway maps representing molecular interaction and reaction networks for
 - metabolism
 - cellular processes
 - diseases, etc

Exercise 12: Gene set enrichment analysis

Identify over-represented GO terms

 Select the two-sample.tsv file and run Pathways / Hypergeometric test for GO. Open hypergeo.html and read about the first term. Check in hypergeo.tsv how many terms do you get.

Extract genes for a specific GO term

- Copy the GO identifier for the top term (GO:0000184).
- Select **two-sample.tsv** and run tool **Utilities / Extract genes from GO**, pasting the GO identifier into the parameter field.
- Open **extracted-from-GO.tsv.** How many genes do you get? Are they up- or down-regulated (use also Volcano plot and Expression profile)?

Identify over-represented ConsensusPathDB pathways

- Select two-sample.tsv and run Pathways / Hypergeometric test for ConsensusPathDB.
- Click on the links in the **cpdb.html** file to read about the pathways.

Exercise 13: Gene set test

- Identify differentially expressed KEGG pathways
 - Select the <u>normalized.tsv</u> file and Pathways / Gene set test. Set the Number of pathways to visualize = 4
 - Explore **global-test-result-table.tsv.** How many differentially expressed KEGG pathways do you get?
 - Explore **multtest.png.** Which gene contributes most to the first pathway?

Microarray data analysis workflow

- Importing data to Chipster
- > Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- Annotation
- Pathway analysis

Clustering

> Saving the workflow

Clustering in Chipster

- Hierarchical
 - Includes reliability checking of the resulting tree with bootstrapping
- K-means
 - Additional tool to estimate K
- Quality threshold
- Self-organizing maps
- K-nearest neighbor (KNN)
 - Classification aka class prediction

Hierarchical clustering

- Provides stable clusters
- Assumes pairwise correlations
- Early mistakes cannot be corrected
- Computationally intensive
- Drawing methods
 - Single / average / complete linkage
- Distance methods
 - Euclidean distance
 - Pearson / Spearman correlation

Hierarchical clustering: distance methods

One can either calculate the <u>distance</u> between two pairs of data sets (e.g. samples) or the <u>similarity</u> between them

Distance methods can yield very different results

Distances

- the Correlation distance
 - red-blue is 0.006
 - red-gray is 0.768
 - blue-gray is 0.7101
- Euclidean distance:
 - red-blue is 9.45
 - red-gray is 10.26
 - blue-gray is 3.29

Correlations are sensitive to outliers (use Spearman)!

Correlations gone wrong

Hierarchical clustering: drawing methods

Hierarchical clustering (euclidean distance)

| calculate | | gene 1 | gene 2 | gene 3 | gene 4 | |
|--------------|----------|-----------------------|----------|--------|--------|--|
| distance | gene 1 | 0 | | | | |
| • matrix | gene 2 | 2 | 0 | | | |
| | gene 3 | 8 | 7 | 0 | | |
| | gene 4 | 10 | 12 | 4 | 0 | |
| | | | | | | |
| └ ─── | | | | | | |
| | | calculate averages of | | | | |
| | | most similar | | | | |
| | | | | | | |
| | | _ | | | | |
| | | gene 1,2 | gene 3 | gene 4 | | |
| | gene 1,2 | 0 | | | | |
| | gene 3 | 7.5 | 0 | | | |
| | gene 4 | 11 | 4 | 0 | | |
| | | 11 | | | | |
| | | aslaulata avaragas of | | | | |
| | | Calcula | | | | |
| ↑ | | most similar | | | | |
| | | | | | | |
| | | | | | | |
| | | gene 1,2 | gene 3,4 | | | |
| | gene 1,2 | 0 | 0 | | | |
| | gene 3,4 | 9.25 | 0 | | | |
| | | | | | | |

Hierarchical clustering (avg. linkage)

| † | calculate | | gene 1 | gene 2 | gene 3 | gene 4 | |
|--------------------|--------------------|---|---------------------------------------|--------------|--------|--------|--|
| distance
matrix | distance
matrix | gene 1
gene 2
gene 3
gene 4 | 0
2
8
10 | 0
7
12 | 04 | 0 | |
| | | | calculat
mo | | | | |
| Dendrogram | | | gene 1,2 | gene 3 | gene 4 | | |
| 1 2 3 4 | | gene 1,2
<mark>gene 3</mark>
gene 4 | 0
7.5
11 | 0
4 | 0 | | |
| | | | calculate averages of
most similar | | | | |
| | | gene 1.2 | gene 1,2
0 | gene 3,4 | L | | |
| | | gene 3,4 | 9.25 | 0 | | | |

When assessing similarity, look at the branching pattern instead of sample order

Bootstrap resampling

au bo μ 0 100 50 201909_a1 Height 100 70 0.5 10 0 0 00

Cluster dendrogram with AU/BP values (%)

- checks uncertainty in hierarchical cluster analysis
- AU = approximately unbiased p-value, computed by multiscale bootstrap resampling. Clusters with AU larger than 95% are strongly supported by data.
- BP = bootstrap probability p-value, computed by normal bootstrap
 resampling

Distance: correlation Cluster method: average

K-means clustering

Quality threshold clustering

K nearest neighbour clustering

Exercise 14: Hierarchical clustering

Cluster genes

- Select the column-value-filter.tsv and run Clustering / Hierachical.
- View the resulting file **hc.tre** as **Hiearchical clustering**. Select the genes in the last cluster by clicking on the heatmap rows. Create a new dataset out of the selection.

Cluster genes and samples

- Select the **column-value-filter.tsv** and run the tool **Visualization / Heatmap.**
- Select the column-value-filter.tsv and run the tool
 Visualization / Annoated heatmap, using parameters
 - Coloring scheme = Blue white red
 - Cluster samples only = no

Microarray data analysis workflow

- Importing data to Chipster
- > Normalization
- Describing samples with a phenodata file
- Quality control
 - Array level
 - Experiment level
- Filtering (optional)
- Statistical testing
 - Parametric and non-parametric tests
 - Linear modeling
 - Multiple testing correction
- Annotation
- Pathway analysis
- > Clustering
- Saving the workflow

Saving and using workflows

- Select the <u>starting point</u> for your workflow
- Select "Workflow/ Save starting from selected"
- Save the workflow file on your computer with a meaningful name
 - Don't change the ending (.bsh)

To run a workflow on another dataset, select

- Workflow \rightarrow Open and run
- Workflow → Run recent (if you saved the workflow recently).

Exercise 15: Saving a workflow

- Prune your workflow if necessary by removing
 - cyclic structures
 - files produced by visual selection (gray boxes)
- Save the workflow
 - Select normalized.tsv and click on Workflow / Save starting from selected. Give your workflow a meaningful name and save it.

Illumina data analysis: summary

Normalization

- lumi method
- Quality control at array level: are there outlier arrays?
 - density graph and boxplot
- Quality control at experiment level: do the sample groups separate? Are there batch effects or outliers?
 - PCA, NMDS, dendrogram
- Independent filtering of genes
 - e.g. 50% based on coefficient of variation
 - · Depends on the statistical test to be used later
- Statistical testing
 - Empirical Bayes method (two group test / linear modeling)
- Annotation, pathway analysis, promoter analysis, clustering, classification...

Design of experiments

When planning an experiment, pay attention to

- The number of biological replicates
 - Technical replicates are a different thing!
- Sample pairing
 - Use paired samples if you can
- > Pooling
 - Avoid it if possible
- Reference samples
 - Should be as similar as possible: same individual, tissue...

Technical vs. biological replicates

- Biological replicates are separate individuals/samples
 - Necessary for a properly controlled experiment
- Fechnical replicates are repeated measurements using the same RNA isolate or sample
 - Waste of resources?
 - Can cause unnecessary variance reduction → increases number of false positives
- > Avoid mixing biological and technical replicates!

Technical vs. biological replicates

- Dummy example: Let's measure the average height of a Finnish male.
 - **Biological** replicates: different individuals
 - **Technical** replicates: measure the same individual with different measuring tape

Technical vs. biological replicates

Distinction between technical and biological replicates is fuzzy.

Replicate number

- Publication quality data needs at least 3 biological replicates per sample group.
 - This can be sufficient for cell-cultures and test animals
- More reasonable numbers:
 - Cell cultures / test animals: 3 is minimum, 4-5 OK, >7 excellent
 - Patients: 3 is minimum, 10-20 OK, >50 good
 - Power analysis can be used to estimate sample sizes

Paired samples

Using paired samples reduces variance, as individual variation can be tackled using a matched control

- Pre vs. post treatment samples
- Tumor vs. normal samples from the same patient

Example

 6 patients, 2 samples from each. Enough money to analyze only 6 samples. Which option do you choose?

Pooling

- If possible, don't pool samples.
- If you don't have enough material to analyze each sample on its own, you might have to pool.
- Careful with concentrations!
- Make pools as similar as possible

