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Motivation

• In cardiac CT, the imaging of small and fast moving 

vessels places high demands on the spatial and temporal 

resolution.

• Displacements of 𝑑 ≈
𝑻𝐫𝐨𝐭

2
ҧ𝑣 ≈ 125 ms ∙ 50

mm

s
= 6.25 mm are 

possible according to RCA velocity measurements1-4.      

• Standard cardiac reconstruction might have an 

insufficient temporal resolution introducing strong 

motion artifacts. 

1Achenbach et al. In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology, Vol. 216, Aug 2000.
2Vembar et al. A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT.
Med. Phys. 30, Jul 2003.

3Shechter et al. Displacement and velocity of the coronary arteries: Cardiac and respiratory motion. IEEE TMI 25(3): 369-375, Mar 2006.
4Husmann et al. Coronary artery motion and cardiac phases: Dependency on heart rate - Implications for CT image reconstruction. Radiology 245, Nov 2007.
5W. B. Meijboom et al., “64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease”, 
J. Am. Coll. Cardiol. 50(15):1469–1475, 2007.
6R. Leta et al., “Ruling out coronary artery disease with noninvasive coronary multidetector CT angiography before noncoronary cardiovascular surgery”, Heart 258(2), 2011.

CTCA image of the right coronary artery5

Significant 
stenosis

Nonsignificant 
stenosis

CTCA image of the left coronary artery6
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Motivation

Motion artifacts

G. Pontone et al., “Determinants of rejection rate for coronary CT angiography fractional flow reserve analysis”, Radiology, 292(3):597–605, 2019

C = 0 HU, W = 1200 HU 
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No Motion Artifacts          With Motion Artifacts

C = 0 HU, W = 1000 HU

R LR

Labeled five 
chamber view 
of the heart 1

1 Benoit Desjardins and Ella A. Kazerooni. ECG-gated cardiac CT: a review. AJR 182:993-1010, 2004

L

R L
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Deep Cosmetic Motion Artifact Reduction

• Image-based correction = cosmetic correction

• May not be the most confident way to go

Zhang et al. Motion artifact removal in coronary CT angiography based
on generative adversarial networks. EuRad 33:43-53, 2023.

Stick to estimating 
motion vector 

fields!
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Cardiac MoCo Strategies

…

Multi-phase / registration-based 
approaches1-4

Partial angle-based approaches7-9, 12

Limited angle approaches5, 6 Deep learning image-based
approaches10, 11

→ Not optimal in terms of x-ray dose 
since several phases are required

→ Current applications limited to
coronary artery

→ Limited capability to improve 
temporal resolution

→ Image-to-image translation may alter 
the shape of the coronary arteries

→ Purely cosmetic and non-physical

1U. Van Stevendaal et al., “A motion-
compensated scheme for helical cone-beam
reconstruction in cardiac CT angiography”, Med.
Phys. 35 (7): 3239–3251 (2008).
2A. Isola et al., “Fully automatic nonrigid
registration-based local motion estimation for
motion-corrected iterative cardiac CT
reconstruction”, Med. Phys. 37 (3): 1093–1109
(2010).
3R. Bhagalia et al., “Nonrigid registration-based
coronary artery motion correction for cardiac
computed tomography”, Med. Phys. 39 (7): 4245–
4254 (2012).
4Q. Tang et al., “A fully four-dimensional, iterative
motion estimation and compensation method for
cardiac CT”, Med. Phys. 39 (7): 4291–4305 (2012).
5J. Tang et al., “Temporal resolution improvement
in cardiac CT using PICCS (TRI-PICCS):
Performance studies”, Med. Phys. 37 (8): 4377–
4388 (2010).
6H. Schöndube et al., “Evaluation of a novel CT
image reconstruction algorithm with enhanced
temporal resolution”, SPIE 2011: 7961: 79611N
(2011).
7S. Kim et al., “Cardiac motion correction based
on partial angle reconstructed images in x-ray
CT”, Med. Phys. 42 (5): 2560–2571 (2015).
8J. Hahn, M. Kachelrieß et al., “Motion
compensation in the region of the coronary
arteries based on partial angle reconstructions
from short-scan CT data”, Med. Phys. 44 (11):
5795–5813 (2017).
9S. Kim et al., “Cardiac motion correction for
helical CT scan with an ordinary pitch”, IEEE TMI
37 (7): 1587–1596 (2018).
10T. Lossau et al., “Motion estimation and
correction in cardiac CT angiography images
using convolutional neural networks”, Comput.
Med. Imag. Grap. 76: 101640 (2019).
11S. Jung et al., “Deep learning cross-phase style
transfer for motion artifact correction in coronary
computed tomography angiography”, IEEE
Access 8: 81849–81863 (2020).

12J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Partial Angle-Based Motion Compensation 
(PAMoCo)

Animated rotation time = 100 × real rotation time
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Partial Angle-Based Motion Compensation 
(PAMoCo)
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Partial Angle-Based Motion Compensation 
(PAMoCo)

Apply motion vector fields (MVFs) to partial angle reconstructions

Motion vector field
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Spatial 
transformer

Deep PAMoCo
with fully connected final layers

PARs centered 
around

coronary artery

Neural network to predict 
parameters of a motion model

Application of the motion model to 
the PARs via a spatial transformer

Reinsertion of patch into 
initial reconstruction

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patch extraction

Training Data Generation

• Removal of coronary arteries from real CT reconstructions.

• Insertion of artificial coronary arteries with different shape, size, and 
contrast.

• Simulation of CT scans with coronary artery motion.

Forward 
projection

Motion simulation

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.

Results
Measurements at a Siemens Somatom AS, patient 1

C = 0 HU, W = 1200 HU
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J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.

Results
Measurements at a Siemens Somatom AS, patient 2

Slice 1 Slice 2 Slice 3 Slice 4
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J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.

Results
Measurements at a Siemens Somatom AS, patient 3

Slice 1 Slice 2 Slice 3 Slice 4
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Deep PAMoCo with Standard or Residual U-Net
New Network Architecture for the Whole Heart

Version 1: Deep PAMoCo with standard U-Net
Version 2: Deep PAMoCo with  residual U-Net
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Training Data and Training
• Cardiac patient data sets (from different sources) to obtain DVFs

– Systolic cardiac phase

– Diastolic cardiac phase

– VoxelMorph to find the DVF between the two phases

• Divide DVF into N180 = 600 sub-DVFs for simulation 

– Adopted linear motion due to the short time duration between two phases

• Deform patient volumes using the sub-DVFs and forward project them

– Each projection corresponds to a different motion state

• Divide the 180° sinogram into 25 partial angle sinograms (7.2° each) 

– Each partial angle sinogram comprises 24 motion states.

– The 25 sinograms correspond to the time steps -12, -11, …, 0, … +11, +12.

• Reconstruct each of the partial angle sinograms with FBP to obtain PARs.

• Deep PAMoco estimates 1 DVF for each of the 25 PARs, applies the spatial transformer,
then sums.

– Volume loss (VolLoss) weighted MSE: The reconstruction of the time step 0 is used as label.

• Training for 230 epochs

– Adam optimizer was used with scheduled learning rate starting at 10-3.
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Images C = 0 HU, W = 1000 HU. Difference images: C = 0 HU, W = 100 HU.

Ground Truth FBP
Deep PAMoCo

with standard U-Net
Deep PAMoCo

with residual U-Net

Patient 1
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Patient 2 

Images C = 0 HU, W = 1000 HU. Difference images: C = 0 HU, W = 100 HU.

Ground Truth FBP
Deep PAMoCo

with standard U-Net
Deep PAMoCo

with residual U-Net
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Patient 3

Images C = 0 HU, W = 1000 HU. Difference images: C = 0 HU, W = 100 HU.

Ground Truth FBP
Deep PAMoCo

with standard U-Net
Deep PAMoCo

with residual U-Net
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No Motion Artifacts                 Deep PAMoCo

R LR

Labeled five 
chamber view 
of the heart 1

1 Benoit Desjardins and Ella A. Kazerooni. ECG-gated cardiac CT: a review. AJR 182:993-1010, 2004

L

R L

C = 0 HU, W = 1000 HU
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Discussion and Conclusions
• Motion artifacts in the heart were mostly removed.

• Mitigated the need for segmentation of coronary arteries 

• Deep PAMoCo with the residual U-Net was able to
improve the entire heart MAE by 74.4% from FBP and by 
53.3% from the standard U-Net.
– Ventricle: 61.2% improvement from FBP

– Aortic valve: 75.2% improvement from FBP

• Limitations:
– Motion simulation not yet realistic enough

– Not applied to real patient data, yet

– Only single-source energy-integrating CT considered so far

FBP

Deep PAMoCo
with residual UNet

(MAE values) FBP
Deep PAMoCo

std. U-Net

Deep PAMoCo

res. U-Net

Whole heart 32.7 HU 17.9 HU 08.4 HU

Ventricle 43.2 HU 36.3 HU 16.8 HU

Aortic valve 27.6 HU 10.7 HU 06.9 HU



Thank You!

• This presentation will soon be available at 
www.dkfz.de/ct.

• Job opportunities through 
marc.kachelriess@dkfz.de or through
DKFZ’s PhD program. 

• Parts of the reconstruction software were 
provided by RayConStruct® GmbH,
Nürnberg, Germany.

E. Eulig, B. Ommer, and M. Kachelrieß. Benchmarking deep 
learning-based low-dose CT image denoising algorithms.

Med. Phys. 51(12):8776-8788, December 2024. 

github.com/eeulig/ldct-benchmark

Low dose CT benchmark:
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