Deep Learning-Based Partial Angle Motion Compensation for the Entire Heart

> Ou Li, Joscha Maier, and Marc Kachelrieß German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Motivation

- In cardiac CT, the imaging of small and fast moving vessels places high demands on the spatial and temporal resolution.
- Displacements of $d \approx \frac{T_{rot}}{2} \ \bar{v} \approx 125 \text{ ms} \cdot 50 \frac{\text{mm}}{\text{s}} = 6.25 \text{ mm}$ are possible according to RCA velocity measurements¹⁻⁴.
- Standard cardiac reconstruction might have an insufficient temporal resolution introducing strong motion artifacts.

 ¹Achenbach et al. In-plane coronary arterial motion velocity: measurement with electron-beam CT. Radiology, Vol. 216, Aug 2000.
²Vembar et al. A dynamic approach to identifying desired physiological phases for cardiac imaging using multislice spiral CT. Med. Phys. 30, Jul 2003.

³Shechter et al. Displacement and velocity of the coronary arteries: Cardiac and respiratory motion. IEEE TMI 25(3): 369-375, Mar 2006.

⁴Husmann et al. Coronary artery motion and cardiac phases: Dependency on heart rate - Implications for CT image reconstruction. Radiology 245, Nov 2007.

⁶R. Leta et al., "Ruling out coronary artery disease with noninvasive coronary multidetector CT angiography before noncoronary cardiovascular surgery", Heart 258(2), 2011.

CTCA image of the left coronary artery⁶

⁵W. B. Meijboom et al., "64-slice computed tomography coronary angiography in patients with high, intermediate, or low pretest probability of significant coronary artery disease", J. Am. Coll. Cardiol. 50(15):1469–1475, 2007.

Motivation

C = 0 HU, *W* = 1200 HU

Motion artifacts

Table 3: Reason for FFR _{ct} Rejection in the ADVANCE Registry and Clinical Cohort				
	$\mathrm{FFR}_{\mathrm{CT}}$ Rejected*			
Reason for Rejection	ADVANCE Registry $(n = 80)$	Clinical Cohort (<i>n</i> = 892)		
Inadequate image quality [†]				
Blooming	4 (5.0)	29 (3.0)		
Clipped structure	4 (5.0)	39 (4.3)		
Motion artifacts	63 (78.0)	729 (81.4)		
Image noise	2 (2.5)	198 (22.1)		
Inappropriate selemission				
Stent or previous coronary artery bypass graft present	5 (6.2)	116 (13.0)		
Cardiac hardware present	2 (2.5)	29 (3.2)		

The rejection rate was 892 of 10416 cases submitted

No Motion Artifacts

With Motion Artifacts

¹ Benoit Desjardins and Ella A. Kazerooni. ECG-gated cardiac CT: a review. AJR 182:993-1010, 2004

Deep Cosmetic Motion Artifact Reduction

- Image-based correction = cosmetic correction
- May not be the most confident way to go

¹U. Van Stevendaal et al., "A motioncompensated scheme for helical cone-beam reconstruction in cardiac CT angiography", Med. Phys. 35 (7): 3239–3251 (2008).

²A. Isola et al., "Fully automatic nonrigid registration-based local motion estimation for motion-corrected iterative cardiac CT reconstruction", Med. Phys. 37 (3): 1093–1109 (2010).

³R. Bhagalia et al., "Nonrigid registration-based coronary artery motion correction for cardiac computed tomography", Med. Phys. 39 (7): 4245–4254 (2012).

⁴Q. Tang et al., "A fully four-dimensional, iterative motion estimation and compensation method for cardiac CT", Med. Phys. 39 (7): 4291–4305 (2012).

⁵J. Tang et al., "Temporal resolution improvement in cardiac CT using PICCS (TRI-PICCS): Performance studies", Med. Phys. 37 (8): 4377– 4388 (2010).

⁶H. Schöndube et al., "Evaluation of a novel CT image reconstruction algorithm with enhanced temporal resolution", SPIE 2011: 7961: 79611N (2011).

⁷S. Kim et al., "Cardiac motion correction based on partial angle reconstructed images in x-ray CT", Med. Phys. 42 (5): 2560–2571 (2015).

⁸J. Hahn, M. Kachelrieß et al., "Motion compensation in the region of the coronary arteries based on partial angle reconstructions from short-scan CT data", Med. Phys. 44 (11): 5795–5813 (2017).

⁹S. Kim et al., "Cardiac motion correction for helical CT scan with an ordinary pitch", IEEE TMI 37 (7): 1587–1596 (2018).

¹⁰T. Lossau et al., "Motion estimation and correction in cardiac CT angiography images using convolutional neural networks", Comput. Med. Imag. Grap. 76: 101640 (2019).

¹¹S. Jung et al., "Deep learning cross-phase style transfer for motion artifact correction in coronary computed tomography angiography", IEEE Access 8: 81849–81863 (2020).

Cardiac MoCo Strategies

Multi-phase / registration-based approaches¹⁻⁴

→ Not optimal in terms of x-ray dose since several phases are required

Limited angle approaches^{5, 6}

Limited capability to improve temporal resolution

Partial angle-based approaches^{7-9, 12}

→ Current applications limited to coronary artery

Deep learning image-based approaches^{10, 11}

Image-to-image translation

 → Image-to-image translation may alter the shape of the coronary arteries
→ Purely cosmetic and non-physical

Partial Angle-Based Motion Compensation (PAMoCo)

Animated rotation time = 100 × real rotation time

Partial Angle-Based Motion Compensation (PAMoCo)

Partial Angle-Based Motion Compensation (PAMoCo)

 $\,$ / Motion vector field $\, {f s}_1({f r})$

Apply motion vector fields (MVFs) to partial angle reconstructions

Deep PAMoCo with fully connected final layers

Training Data Generation

- Removal of coronary arteries from real CT reconstructions.
- Insertion of artificial coronary arteries with different shape, size, and contrast.
- Simulation of CT scans with coronary artery motion.

Results

Measurements at a Siemens Somatom AS, patient 1

Results

Measurements at a Siemens Somatom AS, patient 2

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.

dkfz.

Results

Measurements at a Siemens Somatom AS, patient 3

Deep PAMoCo with Standard or Residual U-Net New Network Architecture for the Whole Heart

Version 2: Deep PAMoCo with residual U-Net

Training Data and Training

- Cardiac patient data sets (from different sources) to obtain DVFs
 - Systolic cardiac phase
 - Diastolic cardiac phase
 - VoxelMorph to find the DVF between the two phases
- Divide DVF into $N_{180} = 600$ sub-DVFs for simulation
 - Adopted linear motion due to the short time duration between two phases
- Deform patient volumes using the sub-DVFs and forward project them
 - Each projection corresponds to a different motion state
- Divide the 180° sinogram into 25 partial angle sinograms (7.2° each)
 - Each partial angle sinogram comprises 24 motion states.
 - The 25 sinograms correspond to the time steps -12, -11, ..., 0, ... +11, +12.
- Reconstruct each of the partial angle sinograms with FBP to obtain PARs.
- Deep PAMoco estimates 1 DVF for each of the 25 PARs, applies the spatial transformer, then sums.
 - Volume loss (VolLoss) weighted MSE: The reconstruction of the time step 0 is used as label.
- Training for 230 epochs
 - Adam optimizer was used with scheduled learning rate starting at 10⁻³.

Patient 1

Images C = 0 HU, W = 1000 HU. Difference images: C = 0 HU, W = 100 HU.

Patient 2

Images C = 0 HU, W = 1000 HU. Difference images: C = 0 HU, W = 100 HU.

Patient 3

Images C = 0 HU, W = 1000 HU. Difference images: C = 0 HU, W = 100 HU.

No Motion Artifacts

¹ Benoit Desjardins and Ella A. Kazerooni. ECG-gated cardiac CT: a review. AJR 182:993-1010, 2004

Discussion and Conclusions

- Motion artifacts in the heart were mostly removed.
- Mitigated the need for segmentation of coronary arteries
- Deep PAMoCo with the residual U-Net was able to improve the entire heart MAE by 74.4% from FBP and by 53.3% from the standard U-Net.
 - Ventricle: 61.2% improvement from FBP
 - Aortic valve: 75.2% improvement from FBP
- Limitations:
 - Motion simulation not yet realistic enough
 - Not applied to real patient data, yet
 - Only single-source energy-integrating CT considered so far

(MAE values)	FBP	Deep PAMoCo std. U-Net	Deep PAMoCo res. U-Net
Whole heart	32.7 HU	17.9 HU	8.4 HU
Ventricle	43.2 HU	36.3 HU	16.8 HU
Aortic valve	27.6 HU	10.7 HU	6.9 HU

Thank You!

- This presentation will soon be available at www.dkfz.de/ct.
- Job opportunities through marc.kachelriess@dkfz.de or through DKFZ's PhD program.
- Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

Low dose CT benchmark:

github.com/eeulig/ldct-benchmark

E. Eulig, B. Ommer, and M. Kachelrieß. Benchmarking deep learning-based low-dose CT image denoising algorithms. Med. Phys. 51(12):8776-8788, December 2024.