Deep Bone Extraction in X-Ray Projection Domain

Jonathan Bollig, Fabian Jäger, and Marc Kachelrieß

German Cancer Research Center (DKFZ) Heidelberg, Germany www.dkfz.de/ct

Underlying Concepts

Bone only projection

Soft tissue only projection

Motivation

Bone suppression and enhancement	Beam hardening correction	Registration tasks
<image/>	<image/>	<image/>

Goal and Method

- Goal: Extracting the contribution of bones to the beam attenuation measured in X-ray projections
- Method: Training a 6-layer UNet on patches of 256×256 pixels to predict the separate bone only and soft tissue only projections from complete projection data, the Deep Bone Extraction (DBE)

Complete projection

Bone only projection

Soft tissue only projection

Workflow

Projection Example

Labels

Predictions

Differences

C = 0.7, W = 1.4

C = 0.0, W = 0.5

C = 2.3, W = 4.6

C = 0.0, W = 0.5

Reconstruction Example

Predictions Differences Labels C = -500 HU, W = 600 HUC = 0 HU, W = 200 HU 0

C = -200 HU, W = 1500 HU C = 0 HU, W = 200 HU

Discussion

- 2.5D: including further projections in angular vicinity to the projection of interest as further input channels to the network (CT)
- Replacing bone with water
- Different loss functions (e.g. region-specific MSE)

- > Successful extraction of the contributions of bone and soft tissue
- Tomographical consistency
- > Improvements may include:
 - Angle-dependent networks
 - Polychromatic training data

Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

