
Latent Space Reconstruction (LSR) 
and its Application to CT Detruncation

Anton Kabelac1,2, Elias Eulig1,2, Joscha Maier1,

and Marc Kachelrieß1,2

1German Cancer Research Center (DKFZ), Heidelberg, Germany

www.dkfz.de/ct
2Heidelberg University, Heidelberg, Germany



2

• High quality images can be reconstructed, if the reconstruction 
problem is well-posed.

• In practice, that depends on
– Sufficient projections

– Complete and “noise-free” data

– …

• CT examples for missing data
– Limited angle

– Metal artifacts

– Sparseness artifacts

– Truncation (lateral, longitudinal, …)

– …

Introduction
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Introduction
Truncation in CT
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Introduction
Truncation in CT
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Introduction
Truncation in CT

• Truncation examples from clinical practice 
include:
– Obese patients

– Patients that are not centered

– Using C-arm systems

• Inspired by the FOM of C-arm systems, we 
simulated truncation to a FOM of 15 cm

• Truncation was simulated by zeroing the 
outermost left and right detector channels
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What is a Variational Autoencoder?

• Input and output domain are the same, here x.

• Encoder E maps input onto a normal distribution.

• A point z in latent space corresponds to the parameters of a normal 
distribution.

• Decoder D maps latent space vector onto output.

D. Kingma and M. Well, Auto-Encoding Variational Bayes, arXiv:1312.6114 (2013)

Encoder Decoder

Multivariate
Gaussian
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Sampling from a VAE
Why use a continouse Latent Space?

• The VAE is a generative model.

• It allows to generate new data by sampling points from the continuous 
latent space.

DecoderEncoder
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Main Idea
Latent Space Reconstruction (LSR)

1. Train VAE on untruncated CT images fn

2. Find latent space point z to best match the truncated rawdata p

3. Forward project D(z) and use the resulting rawdata to extrapolate 
the measured rawdata.

4. Do a final image reconstruction of the detruncated sinogram.
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Our VAE
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VGG 16
• 16 convolutional 

layers
• Extracting features 

after 4th layer

Discriminator
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layers
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Wasserstein GAN 
critic
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ResNet50 
model
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images

• 1 fully 
connected 
layer

• 5 transposed 
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Data & Training

• Data:
– Clinical data acquired with a Siemens Somatom Force CT 

– 85 adult patient scans

– 0.6 mm slice thickness and 0.69 to 0.98 mm axial voxel spacing

– Randomly split into training, validation and testing (70:15:15)

• Training:
– Trained for 150 epochs

– Learning rate 0.001

– Adam optimizer

– Hybrid loss function consisting of VAE loss, perceptual loss and WGAN generator loss

Coronal Sagittal
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Search in Latent Space

• Optimization of latent space 
vector in projection domain

• Video showing intermediate 
images of selected iteration 
steps. 

Target Image Target Sinogram
Masked (15 cm)
Target Sinogram

Generated 
Sinogram

Generated Image
Difference to

Target Sinogram
Masked (15 cm)

Generated Sinogram
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cba ++  2

smooth extrapolation

μ/21 hl =

21 AA =

data consistency

K. Sourbelle, M. Kachelrieß and W.A. Kalender, Reconstruction from truncated projections in CT using adaptive detruncation, Eur Radiol 15:1008–1014 (2005)
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Reference Methods
Adaptive Detruncation (ADT)
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J. HJ. Ketola, et al., Deep learning-based sinogram extension method for interior computed tomography, 
Medical Imaging: Physics of Medical Imaging. Vol. 11595. International Society for Optics and Photonics (2021)

Reference Methods
U-Net based Sinogram Extension
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Results

MAEs: 127 HU, 272 HU MAEs: 31 HU, 121 HU MAEs: 10 HU, 69 HU

Ground Truth ADT (classical) U-Net (Ketola et al.) LSR (ours) 

MAEs: 0 HU, 0 HU

MAEs: 0 HU, 0 HU

C = 50 HU, W = 1200 HU.

MAEs:  164 HU, 328 HU MAEs: 26 HU, 130 HU MAEs: 31 HU, 74 HU
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MAEs:  164 HU, 328 HU

MAEs: 127 HU, 272 HU

MAEs: 26 HU, 130 HU

MAEs: 31 HU, 121 HU

MAEs: 31 HU, 74 HU

MAEs: 10 HU, 69 HU

Ground Truth ADT (classical) U-Net (Ketola et al.) LSR (ours) 

MAEs: 0 HU, 0 HU

MAEs: 0 HU, 0 HU

Differences to Ground Truth

Images: C = 50 HU, W = 1200 HU. Difference Images: C = 0 HU, W = 300 HU.
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Results
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Differences to Ground Truth

MAEs: 147 HU, 309 HU

MAEs: 24 HU, 260 HU

MAEs: 18 HU, 129 HU

MAEs: 60 HU, 218 HU

MAEs: 9 HU, 62 HU

MAEs: 6 HU, 95 HU

Ground Truth ADT (classical) U-Net (Ketola et al.) LSR (ours) 

MAEs: 0 HU, 0 HU

MAEs: 0 HU, 0 HU

Images: C = 50 HU, W = 1200 HU. Difference Images: C = 0 HU, W = 300 HU.
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Conclusion & Outlook

• LSR has proven to be a 
capable tool for the 
truncation problem in CT

• Next: tackle other ill-
posed problems like 
metal artifact reduction
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Thank You!
• This presentation will soon be 

available at www.dkfz.de/ct.

• Job opportunities through DKFZ’s 
international PhD or Postdoctoral 
Fellowship programs 
(marc.kachelriess@dkfz.de). 

• Parts of the reconstruction 
software were provided by 
RayConStruct® GmbH, Nürnberg, 
Germany.
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