Latent Space Reconstruction (LSR) and its Application to CT Detruncation

Anton Kabelac^{1,2}, Elias Eulig^{1,2}, Joscha Maier¹, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany www.dkfz.de/ct

²Heidelberg University, Heidelberg, Germany

Introduction

- High quality images can be reconstructed, if the reconstruction problem is well-posed.
- In practice, that depends on
 - Sufficient projections
 - Complete and "noise-free" data
 - ...
- CT examples for missing data
 - Limited angle
 - Metal artifacts
 - Sparseness artifacts
 - Truncation (lateral, longitudinal, ...)
 - ...

Introduction Truncation in CT

Projection Data *p* or Sinogram

Detector

C = 50 HU, *W* = 1400 HU

Introduction Truncation in CT

Truncated Image f

C = 50 HU, W = 1400 HU

the FOM

Introduction Truncation in CT

- Truncation examples from clinical practice include:
 - Obese patients
 - Patients that are not centered
 - Using C-arm systems
- Inspired by the FOM of C-arm systems, we simulated truncation to a FOM of 15 cm
- Truncation was simulated by zeroing the outermost left and right detector channels

What is a Variational Autoencoder?

- Input and output domain are the same, here x.
- Encoder E maps input onto a normal distribution.

 $E(x) = \mathcal{N}(\mu(x), \sigma^2(x))$

- A point *z* in latent space corresponds to the parameters of a normal distribution. $\mathbf{z} \sim \mathcal{N}(\mu(x), \sigma^2(x))$
- Decoder D maps latent space vector onto output.

Sampling from a VAE Why use a continouse Latent Space?

- The VAE is a generative model.
- It allows to generate new data by sampling points from the continuous latent space.

$$f(\mathbf{z}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{z}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\mathbf{z}-\boldsymbol{\mu})\right)$$

Main Idea Latent Space Reconstruction (LSR)

Main Idea Latent Space Reconstruction (LSR)

- 1. Train VAE on untruncated CT images f_n
- 2. Find latent space point *z* to best match the truncated rawdata *p*

$$z = \arg\min_{z} \|\mathsf{X}D(z) - p\|$$

- 3. Forward project D(z) and use the resulting rawdata to extrapolate the measured rawdata.
- 4. Do a final image reconstruction of the detruncated sinogram.

Data & Training

• Data:

- Clinical data acquired with a Siemens Somatom Force CT
- 85 adult patient scans
- 0.6 mm slice thickness and 0.69 to 0.98 mm axial voxel spacing
- Randomly split into training, validation and testing (70:15:15)

• Training:

- Trained for 150 epochs
- Learning rate 0.001
- Adam optimizer
- Hybrid loss function consisting of VAE loss, perceptual loss and WGAN generator loss

$$L = L_{\text{pixel-wise}} + \beta \cdot L_{\text{Kullback-Leibler}} + \gamma \cdot L_{\text{perc}} + \delta \cdot L_{\text{WGAN}}$$

Coronal

Sagittal

Search in Latent Space

Optimization of latent space vector in projection domain

 $z = \arg\min_{z} \|XD(z) - p\|_{15 \text{ cm}}$

• Video showing intermediate images of selected iteration steps.

Target Image

Generated Image

Target Sinogram

Generated Sinogram Masked (15 cm) Generated Sinogram

Masked (15 cm)

Target Sinogram

Difference to Target Sinogram

Reference Methods Adaptive Detruncation (ADT)

smooth extrapolation

$$\sqrt{a\xi^2+b\xi+c}$$

data consistency $l_1 = h_2/\overline{\mu}$ $A_1 = A_2$

Reference Methods U-Net based Sinogram Extension

J. HJ. Ketola, et al., *Deep learning-based sinogram extension method for interior computed tomography*, *Medical Imaging: Physics of Medical Imaging*. Vol. 11595. International Society for Optics and Photonics (2021)

Results

C = 50 HU, W = 1200 HU.

Differences to Ground Truth

Images: C = 50 HU, W = 1200 HU. Difference Images: C = 0 HU, W = 300 HU.

Results

C = 50 HU, W = 1200 HU.

Differences to Ground Truth

Images: C = 50 HU, W = 1200 HU. Difference Images: C = 0 HU, W = 300 HU.

Conclusion & Outlook

- LSR has proven to be a capable tool for the truncation problem in CT
- Next: tackle other illposed problems like metal artifact reduction

Thank You!

- This presentation will soon be available at www.dkfz.de/ct.
- Job opportunities through DKFZ's international PhD or Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).
- Parts of the reconstruction software were provided by RayConStruct[®] GmbH, Nürnberg, Germany.

The 8th International Conference on Image Formation in X-Ray Computed Tomography

August 5 – August 9, 2024, Bamberg, Germany www.ct-meeting.org

Conference Chair Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

