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Noise Reduction




Nolise Removal
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 Architecture based on state-of-the-art
networks for image classification (ResNet).
« 32 conv layers with skip connections O Ioss'\f/IuSnEction
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* About 2 million tunable parameters in total CT images 3
« Inputis arbitrarily-size stack of images, Full-dose
with a fixed number of adjacent slices in reference

the channel/feature dimension.

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
@

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Remoyval

Low dose images (1/4 of full dose)

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Remoyval

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Remoyval

Full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Remoyval

Denoised full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Canon‘s AICE

« Advanced intelligent Clear-1Q Engine (AICE)

 Trained to restore low-dose CT data to match the
properties of FIRST, the model-based IR of Canon.

 FIRST is applied to high-dose CT images to obtain a
high fidelity training target

Training AiCE — Deep Learning

Anatomical
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Multiple Variations

AICE Image

Information taken from https://global.medical.canon/products/computed-tomography/aice_dIr dkuQ



U =100 kV

CTDI = 0.6 mGy
DLP =24.7 mGy-cm
Dy = 0.35 mSv

“—{ Courtesy of
— . Radboud ,
FIRST Lung (full'iterative) AICE Lung (deep Tearning thei,etﬁ(‘;”;;”dcs
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Akagi et al., Deep learning reconstruction improves image f
quality of abdominal ultra-high-resolution CT, Eur. Radiol. 2019 dk z.




GE’s True Fidelity

« Based on adeep CNN

 Trained to restore low-dose CT data to match the
properties of Veo, the model-based IR of GE.

 No information can be obtained in how the training is
conducted for the product implementation.

2.5D DEEP LEARNING FOR CT IMAGE RECONSTRUCTION USING A MULTI-GPU
IMPLEMENTATION

Amirkoushyar Ziabari*, Dong Hye Ye * T Somesh Srivastava®, Ken D. Sauer ©

Jean-Baptiste Thibault t Charles A. Bouman*

* Electrical and Computer Engineering at Purdue Uni ity
f Electrical and Computer Engineering at Marquett University
{ GE Healthcare
@ Electrical Engineering at University of Notre Dame

ABSTRACT streaking artifacts caused by sparse projection views in CT
et al. developed method

porating CNN denoisers into MBIR reconstruction
nced prior models using the Plug-and-Play framework

While Model Based Iterative Reconstruction (MBIR) of CT
scans has been shown to have better image quality than Fil-
tered Back Projection (FBP), its use has been limited by

high computational cost. More recently, deep convolutional

neural networks (CNN) have shown great promise in both de- .
. which we call Deep Learn

imately achieving the improved quali
residual neural network. The DL-MBIR method is

noising and reconstruction applications. In this research, we
ch we call Deep
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True Fidelity

ASIR V 50%

Courtesy of GE Healthcare




True and Fake DECT

Existing fake DECT approaches (as of May 2022).

[1] J. Ma, Y. Liao, Y. Wang, S. Li, J. He, D. Zeng, Z. Bian, “Pseudo dual energy CT imaging using
deep learning-based framework: basic material estimation®, SPIE Medical Imaging 2018.

[2] W. Zhao, T. Lv, P. Gao, L. Shen, X. Dai, K. Cheng, M. Jia, Y. Chen, L. Xing, “A deep learning
approach for dual-energy CT imaging using a single-energy CT data”, Fully3D 2019.

[3] D. Lee, H. Kim, B. Choi, H. J. Kim, “Development of a deep neural network for generating
synthetic dual-energy chest x-ray images with single x-ray exposure”, PMB 64(11), 2019.

[4] L. Yao, S. Li, D. Li, M. Zhu, Q. Gao, S. Zhang, Z. Bian, J. Huang, D. Zeng, J. Ma, “Leveraging deep
generative model for direct energy-resolving CT imaging via existing energy-integrating CT images”,
SPIE Medical Imaging 2020.

[5] D. P. Clark, F. R. Schwartz, D. Marin, J. C. Ramirez-Giraldo, C. T. Badea, “Deep learning based
spectral extrapolation for dual-source, dual-energy x-ray CT”, Med. Phys. 47 (9): 4150-4163, 2020.

[6] C. K. Liu, C. C. Liu, C. H. Yang, H. M. Huang, “Generation of brain dual-energy CT from single-
energy CT using deep learning”, Journal of Digital Imaging 34(1):149-161, 2021.

[7] T. Lyu, W. Zhao, Y. Zhu, Z. Wu, Y. Zhang, Y. Chen, L. Luo, S. Li, L. Xing, “Estimating dual-energy
CT imaging from single-energy CT data with material decomposition convolutional neural network”,
Medical Image Analysis 70:1-10, 2021.

[8] F. R. Schwartz, D. P. Clark, Y. Ding, J. C. Ramirez-Giraldo, C. T. Badea, D. Marin, “Evaluating
renal lesions using deep-learning based extension of dual-energy FoV in dual-source CT—A
retrospective pilot study”, European Journal of Radiology 139:109734, 2021.

[9] Y. Li, X. Tie, K. Li, J. W. Garrett, G.-H. Chen, “Deep-En-Chroma: mining the spectral fingerprints
in single-kV CT acquisitions using energy integration detectors”, SPIE Medical Imaging 2022.
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Algorithm for Partial DECT

fo = J0

Xs_l Xsfi_ps,15o
Xst_ll

i+l — f?, — UNet(ui’fz.’le)

Conclusion:

Measuring the physical properties of
the patient at more than one energy
cannot be avoided! ;
GT




Deep Scatter Estimation
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In real time?




Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to
physical interaction probabilities.

* Simulating a large numb~ 5 ries well
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Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
Input: ] 384 x 256 x 4 scatter estimate
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24 x 16 x 320

O- 3 x 3 Convolution, RelLU

12 % 8 x 480 ®» 1x1 Convolution, ReLU
—0O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 -O- Depth Concatenate

Projection data

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
&

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Testing of the DSE Network for
Measured Data (120 kV)

DKFZ table-top CT

Measurement to be corrected

| &

X-ray source

1

N | Detector
A

* Measurement of a head
phantom at our in-house

table-top CT. CoIIimatorI (’\\

e Slit scan measurement o ——
serves as ground truth. X-ray source I L

Ground truth: slit scan

Detector

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Reconstructions of Measured Data

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Slit Scan No Correction

CT Reconstruction

Difference to slit scan

C=0HU, W=1000HU

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

Truncated DSEL?

40 x 40 cm?
flat detector

Ground truth Uncorrected MC-corrected DSE

40 x 40 cm?2
flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelriel3 et al.
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

1J. Maier, M. Kachelriel et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018. dkfz
o

2J. Maier, M. Kachelriel3 et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Scatter in Dual Source CT (DSCT)

i 3 - \‘
Siemens SOMATOM Force
dual source cone-beam spiral CT
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C =40 HU, W = 300 HU, with 2D anti-scatter grid



Cross-DSE

Ground Truth Uncorrected XxDSE (2D, xSSE) Measurement-based
MAE =42.6 HU MAE =4.9 HU MAE =10.6 HU vl

xDSE (2D, xSSE) maps
primary + forward scatter + cross-scatter + cross-scatter approximation — cross-scatter

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU
J. Erath, T. V6th, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelriel3. Deep learning- dkfz
o

based forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.



Conclusions on DSE

 DSE needs about 3 ms per CT and 10 ms per CBCT
projection (as of 2020).

e DSE Is a fast and accurate alternative to MC simulations.

 DSE outperforms kernel-based approaches in terms of
accuracy and speed.

* Facts:
— DSE can estimate scatter from a single (!) x-ray image.
— DSE can accurately estimate scatter from a primary+scatter image.
— DSE generalizes to all anatomical regions.
— DSE works for geometries and beam qualities differing from training.
— DSE may outperform MC even though DSE is trained with MC.

 DSE is not restricted to reproducing MC scatter
estimates.

« DSE can rather be trained with any other scatter
estimate, including those based on measurements.



Deep Dose Estimation
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In real time?




Deep Dose Estimation (DDE)

Combine fast and accurate CT dose estimation using
a deep convolutional neural network.

 Train the network to reproduce MC dose estimates
given the CT image and a first-order dose estimate.

2-channel input:
CT image |
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1M. Baer, M. KachelrieR.
Phys. Med. Biol. 57, 2012.
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J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural dkfz
o

network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!



Results

Thorax, tube A, 120 kV, no bowtie

CT image First order dose
o «.— ) MC DDE
4 ' \ 48
aQ slices 1h 0.25s
whole
& g g body 20 h 55

o MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600

”

GPU
'-l’ “ | i DDE training took 74 h for 300 epochs,
Yy - S | 1440 samples, 48 slices per sample
MC ground truth DDE Relative error

J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019! dk z.



Conclusions on DDE

 DDE provides accurate dose predictions

— for circle scans

— for sequence scans

— for partial scans (less than 360°)

— for limited angle scans (less than 180°)

— for spiral scans

— for different tube voltages

— for scans with and without bowtie filtration
— for scans with tube current modulation

* In practice it may therefore be not necessary to
perform separate training runs for these cases.

 Thus, accurate real-time patient dose estimation may
become feasible with DDE.

J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural dkfz
®

network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!



Patient Risk-Minimizing
Tube Current I\/Iodulatlon

1. Coarse reconstruction from two scout views .
— E.g. X. Ying, et al. X2CT-GAN: Reconstructing CT from / : ‘
biplanar x-rays with generative adversarial networks. ,
CVPR 20109. J

2. Segmentation of radiation-sensitive organs

— E.g. S. Chen, M. Kachelriel3 et al., Automatic multi-organ
segmentation in dual-energy CT (DECT) with dedicated 3D
fully convolutional DECT networks. Med. Phys. 2019.

3. Calculation of the effective dose per view using
the deep dose estimation (DDE)

— J. Maier, E. Eulig, S. Dorn, S. Sawall and M. Kachelriel3.
Real-time patient-specific CT dose estimation using a deep
convolutional neural network. IEEE Medical Imaging
Conference Record, M-03-178: 3 pages, Nov. 2018.

4. Determination of the tube current modulation
curve that minimizes the radiation risk |

— L. Klein, J. Maier, C. Liu, A. Maier, M. Lell, and M. KachelrieR. |
Patient radiation risk—minimizing tube current modulation for f 0

diagnostic CT. Submitted to Med. Phys., 2021. View angle
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Patient 03 - Neck

no TCM : : MASTCM riskTCM
‘ avg

53.HU, 100% mAs, 100%Deff 51 HU, 60% mAs, 51% Deff 51 HU, 59% mAs, 48% Deff
53 HOW00% mAS400% Deff 38 HU, 116% mAs, 100% Deff 36 HU, 124% mAs, 100% Deff
rls_kTCM riskTCM Re 0.12
mix opt BS 0.01
Br 0.01

50 HU, 59% mAs, 44% Deff 50'HU, 63% mAs, 42% Deff
35 HU, 136% mAs, 100% Deff 33 HU, 148% mAs,.100% Deff

C = 25 HU, W = 400 HU dk‘on




Patient 04 - Abdomen

MASTCM riskTCM
avg

52 HU, 100% mAs, 100% Deff 52 HU, 95% mAs, 89% Deff 52 HU, 97% mAs, 71% Deff
52 HU,;100% mAs, 100% Deff 49 HU, 107% mAs, 100% Deff 44 HU;"137% mAs, 100% Deff
rlsFTCM . Re 0.12
op R BS 0.01
e i Br 0.01

Xa_u, 100% mAs, 53%gJeff

38 HU™82% mAs400% Deff

C = 25 HU, W = 400 HU dk‘on



Conclusions on risk TCM

Thanks to Al, significant risk reductions can be
achieved with risk-specific tube current modulation.

Technology-wise the method is ready to be
Implemented.

Risk-specific TCM does not require hardware
changes.

It is up to the vendors to take action!
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Partial Angle-Based Motion
Compensation (PAMoCo)

Animated rotation time = 100 % real rotation time



Partial Angle-Based Motion
Compensation (PAMoCo)




Partial Angle-Based Motion
Compensation (PAMoCo)

Motion vector field s1(r)




Deep Partial Angle-Based Motion
Compensation (Deep PAMoCo)

PARs centered Neural network to predict Reinsertion of patch into
around coronary parameters of a motion model Initial reconstruction
artery

>
i
A

\

' 3 x 3 x 3 Convolution, Batch norm, ReLU . 2 x 2 x 2 Max pooling :}‘7 Flatten .:‘ Dropout (25 %)

Spatial
transformer

Application of the motion model to
the PARs via a spatial transformer?!

[1] M. Jaderberg et al., “Spatial transformer networks”, NIPS 2015: 2017-2025 (2015).



Patient 1

Deep PAMo
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C =0HU, W=1400 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Patient 2

Original

3 e

C=0HU, W=1600 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based dkfz
o

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Patient 3

C=0HU, W=1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Patient 4

Measurements at a Siemens Somatom AS
Slice 1 Slice 2 Slice 3 Slice 4

FBP reconstruction
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Deep PAMoCo

C =0 HU, W = 1200 HU dkfz.



This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by
RayConStruct® GmbH, Nirnberg, Germany.



