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Deep MAR Examples
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Liang, Kaichao, et al. "Metal artifact reduction for practical dental computed tomography by improving 
interpolation‐based reconstruction with deep learning." Medical Physics 46.12 (2019): e823-e834.

LI-MAR 
image in

nicer image 
out



8

Original LI-MAR WLS DL(Original) DL(LI-MAR)
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MAR Example

• Deep CNN-driven patch-based combination of the 
advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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= input feature 1

= input feature 2 = input feature 3

= output

= proposed method
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MAR without Machine Learning is a 
Good Alternative:

Frequency Split Normalized MAR1,2

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C = 40 HU, W = 500 HU).

Uncorrected FSLIMAR FSNMAR

1E. Meyer, M. Kachelrieß. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 2010.   
2E. Meyer, M. Kachelrieß. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012.
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Summary on Deep MAR

• Most common uses for networks:
– Improve image quality in image domain after MAR

– Use network for the sinogram inpainting

– Produce a prior image, e.g. for NMAR

• Additional observations:
– Training data are often produced by segmenting an artifact-free CT  

image, adding metal and applying a polychromatic forward projection to 
different types of tissue separately.

– As of today, it seems hard to outperform NMAR, or hard to give 
convincing clinical examples.
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Deep Detruncation
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Ketola, Juuso HJ, et al. "Deep learning-based sinogram extension method for interior computed tomography." 
Medical Imaging 2021: Physics of Medical Imaging. Vol. 11595. International Society for Optics and Photonics, 2021.
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Ketola, Juuso HJ, et al. "Deep learning-based sinogram extension method for interior computed tomography." 
Medical Imaging 2021: Physics of Medical Imaging. Vol. 11595. International Society for Optics and Photonics, 2021.

Original ADT TV Min

FBPConvNet ProposedFBP
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Fonseca, Gabriel Paiva, et al. "Evaluation of novel AI‐based extended field‐of‐view CT reconstructions." 
Medical Physics (2021).
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Fonseca, Gabriel Paiva, et al. "Evaluation of novel AI‐based extended field‐of‐view CT reconstructions." 
Medical Physics (2021).
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ADT corrected (clipped)ADT corrected

TruncatedOriginal

K. Sourbelle, M. Kachelrieß, and W.A. Kalender, “Reconstruction from truncated projections
in CT using adaptive detruncation,” Eur Radiol 15:1008–1014, 2005.

C = 0 HU, W = 1000 HU
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Summary on Deep Detruncation

• No need for machine learning to restore the gray 
values within the FOM

• Image domain cosmetic detruncation can serve as an 
intermediate step to detruncate CT data.
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Deep Scatter Estimation

???

In real time?
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for 
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationSlit Scan
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C = 0 HU, W = 1000 HU
J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Truncated DSE

FOM

FOM

Ground  truth Uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Siemens SOMATOM Force 
dual source cone-beam spiral CT

Scatter in Dual Source CT (DSCT)

C = 40 HU, W = 300 HU, with 2D anti-scatter grid

Ground Truth Forward Scatter Cross-Scatter Forward 
+ Cross-Scatter
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Scatter in Dual Source CT: xDSE

Uncorrected xDSE (2D, xSSE)

MAE = 10.6 HUMAE = 4.9 HUMAE = 42.6 HU

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU 

Ground Truth

xDSE (2D, xSSE) maps 
primary + forward scatter + cross-scatter + cross-scatter approximation    cross-scatter

Measurement-based

J. Erath, M. Kachelrieß et al. Deep learning-based forward and cross-scatter correction in dual 
source CT. Med. Phys. 48:4824-4842, July 2021.
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ASG

Photon-counting
detector

3 41 2

Primary radiation

Scatter measured by the detector

Scatter attenuated by the ASG



Conventional ASG
Each pixel

surrounded
by ASG 

Energy-integrating
detector

Coarse ASG 
Several pixels  
surrounded

by ASG 

The coarse ASG leads to changes in scatter intensity between neighboring 
pixels, depending on the incident angle of the photon.

3 41 2

Scatter for Coarse ASG

J. Erath, M. Kachelrieß et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. 
Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.
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Scatter for Coarse ASGFour subpixels (S)
merged to one 
macropixel (M)

Detector columns

3

M(0,0)

M(0,1)

M(1,0)

M(1,1)

M(0,2) M(1,2)



left right

Scatter distribution averaged over all detector rows 

J. Erath, M. Kachelrieß et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. 
Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.
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Scatter for Coarse ASG
Scatter distribution averaged over all detector rows 

M(0,0)

M(0,1)

M(1,0)

M(1,1)

M(0,2) M(1,2)

left right



left right

Detector columns
J. Erath, M. Kachelrieß et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. 

Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.
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Scatter Artifacts of Coarse ASG

Coarse ASG

Reconstruction: C = 40 HU, W = 300 HU

Coarse ASGs can lead to scatter-induced moiré artifacts.

Conventional ASG
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688×48×32

344×24×64

172×12×128

86×6×256 

43×3×512

Detector dimension 
1376×144
Input mapping

Input: 6 channels

Merging 6 different channels to 
obtain total scatter correction term

Output: 6 channelsDifferent macro pixel locations

M(0,0)

M(0,1) 

M(1,0)

M(1,1)

M(0,2)

M(1,2)

Each channel 
corresponds to a 
different pixel position 
between the lamellae of 
the ASG

Network Architecture

3×3 Convolution, Stride 2

3×3 Convolution, Stride 1

Unpooling + depth concat.

Skip connection

J. Erath, M. Kachelrieß et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. 
Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.
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MAE = 8.0 HU MAE = 0.6 HU

Uncorrected DSEGround Truth

Simulated Reconstruction C = 0 HU, W = 400 HU, 
Difference to GT C = 0 HU, W = 50 HU 

Results in Reconstructed Images
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MAE = 8.0 HU MAE = 0.6 HU

Uncorrected DSEGround Truth

Simulated Reconstruction C = 0 HU, W = 400 HU, 
Difference to GT C = 0 HU, W = 50 HU 

Results in Reconstructed Images
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Conclusions on DSE

• DSE needs about 3 ms per CT projection (as of 2020).

• DSE is a fast and accurate alternative to MC simulations.

• DSE outperforms other approaches.

• Facts:
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE generalizes to all anatomical regions.

– DSE works for geometries and beam qualities differing from training.

– DSE may outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter estimates. 
It can be trained with any other scatter estimate, including 
those based on measurements.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Deep Cardiac Motion Compensation

???
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ROI

Initial segmented stack volume

Subdivide the projection data 
into 2K + 1 overlapping sectors

k = 0

Partial angle reconstructions

FWHM = K = 12

PAMoCo
Generate 2K+1 Partial Angle Reconstructions

0° 180°

J. Hahn, M. Kachelrieß et al. Motion compensation in the region of the coronary arteries based on 
partial angle reconstructions from short scan CT data. Med. Phys. 44(11):5795-5813, September 2017.
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Deep PAMoCo
Network architecture

Spatial 
transformer 

module

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.

FCN-Layer output: two control points for a cubic spline: 
for k = –K, and for k = +K. The third control point at k = 

0 is (0, 0, 0), i.e. no deformation for the central PAR.

Initial volume
(with motion artifacts)

Final volume
(no motion artifacts)
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Results

C = 1000 HU
W = 1000 HU
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J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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C = 1000 HU
W = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Results
N

o
 C

o
rr

e
c

ti
o

n
D

e
e

p
 P

A
M

o
C

o

Slice 1 Slice 2 Slice 3 Slice 4

C = 1100 HU
W = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Are the Methods Reliable?
• Studies about explainability of AI in CT image formation 

are more than sparse.

• My thoughts:
– Cosmetic corrections: Unclear if noise reduction, metal artifact 

reduction etc. is removing/adding lesions. The whole process is a 
black box.

– Physical corrections: A clear physical meaning and rawdata fidelity 
appear more reliable. Examples:

» MAR or detruncation networks where the NN output is used only to 
forward project and inpaint/extrapolate the rawdata

» Scatter correction that estimates a smooth physically realistic 
(trained with MC) scatter signal in intensity domain

» Motion correction networks that estimate motion vectors rather 
than manipulating the voxel values
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Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


