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Metal Stre
Deep Lea

Gjesteby, 2019

Metal artifact reduction on cervical CT
images by deep residual learning

Metal-Artifact Reduction Using Dy
d Sinogram Completion: Ini

Deep Learning based Metal Inpainting in the
Projection Domain using additional Neighboring

Giestahy 2017

Takes 32x32 ing
produces 2052
Very basic CNN

Zhang, 2018
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Claus, 2017

Trained and evaluated on simulated data with metal
circlein the center (no other positions tested)

Data are heavily simplified (random ellipses)!
Inputs are 2 81x21 sized patches from the sinogram
next to metal patch. Won't work for complex metals
Relatively small network (4 layers)

Gottschalk, 2020
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Deep Neural Network for CT Metal Artifact
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Gjesieby, 2019

Same network as in previous work
Detail image is the high-pass filtered original image
Detail image and NMAR image are both put as inputs
in 2 streams that converge later in the CNN

Network uses residual error and cost function is a
combination of MSE and perceptual loss

Zhang, 2018

Metal is placed in real CT images. Artifacts are
created by forward and back-projecting soft tissue,
bone, and metal

Network input is patch of artifactimage /and output
is the residual, i.e. R= /- GT

Loss function is MSE of the residual

Learning the residual is found to be better than
learning the artifact-free image (no images)

Gottschalk, 2020

U-Net corrects CBCT projections
Has metal mask and 10 neighbouring projections as
additional input channels

Liao, 2019

Firstreplaces metal trace in the projections (.. fixed
angle but varying § and z)
and

Then the j into
uses a second network to improve those
Both networks are GANs with a U-Net generator and
CNN discriminator

Uses a Mask Pyramid to ensure the metal mask is
seen by all stages of the U-Net

Data are regular CT scans with metal traces from
other patients imposed on them

Giestahy 2018

Giestehy 2018

R image and the

function is MSE or perceptual loss (from VGG

it e by e i 14 e k28 i s = e e L

o

SRt g (Yo o V] e ek e

A dual-stream deep convolutional network for reducing metal
streak artifacts in CT imaj

Convolutional Neural Ne!

work Based Yu, 2018

Metal Artifact Reduction in X-Ray

Cumputed Tomuq

Fast Enhanced CT

Gottschalk, 2019

+ Corrects C-Arm projection data

+ Data were obtained by placing metal on top of human
knee cadavers

* Loss function is MSE

+ Networks are based on U-Net with additional skip
connection from original image to output

§ DS hnbork can i Ve ic Inslicity Sopran: U
metal for the Mask-MAR:

+ Providing a metal mask slgnlﬂcantlylmwoves
results

+ Results are blurred slightly

Ghani, 2019

Data Domain Deep Learning

+ Metal trace is replaced via a CGAN

+ Uses transfer learning from training data to real data;
not described in depth

* Not applied to medical images

Xing, 2019

+ Perform initial LIMAR to obtain images with
interpolation artifacts

« Apply U-Net to pre-corrected images to reduce
artifacts

+ Network minimizes L2-norm loss outside of the metal
regions

Yu, 2018

+ Training data are generated from clinical data with
motal artifacts added afterwards through
rd- & back

+ Cost function is MSE

+ CNN gets patches from the artifact, BHC corrected,
and LI corrected image as Input, produces corrected
patche

+ Prior image is generated from CNN result by
segmenting water and setting it to the average value
of all water pixels and leaving bone intact

+ Metal trace in the uncorrected sinogram is replaced
with values from the prior image

+ Having different types of MAR as input improves
results

Ghani, 2019

Lin, 2019

+ Input are LI pre-corrected sinograms/images

+ Firstimproves the sinograms through a U-Net with
mask pyramid (so all parts of the U-Net see the mask)

+ Then applies FBP (Radon Inversion Layer) and uses
the result as input for a second U-Net, which
improves itin image domain

+ Unclear how/if the LI and CNN results are combined




Metal artifact reduction for practical dental computed tomography by

improving interpolation-based reconstruction with deep learning
Kaichao Liang, Li Zhang, and Hongkai Yang

Department of Engineering Physics, Tsinghua University, Beijing 100084, China
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Fig. 3. U-Net architecture.

Liang, Kaichao, et al. "Metal artifact reduction for practical dental computed tomography by improving
interpolation-based reconstruction with deep learning." Medical Physics 46.12 (2019): e823-e834. dkfz.
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MAR Example

 Deep CNN-driven patch-based combination of the
advantages of several MAR methods trained on
simulated artifacts

Input Data Feature maps Feature maps Feature maps Feature maps Output
32@64x 64 32@64x 64 32@64x 64 32@64x 64 1@64x 64
)
UL .

Convolution Convolution Convolution Convolution .
+ RelU +RelU +RelU +RelU Convolution

» followed by segmentation into tissue classes

« followed by forward projection of the CNN prior and
replacement of metal areas of the original sinogram

« followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray dkfz
@

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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MAR without Machine Learning Is a
Good Alternative:
Frequency Split Normalized MARY2

Uncorrected FSLIMAR FSNMAR
.:;i\:. 5 -
”~
= S gl WP a0 Lo, g
v E LV et P -

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C = 40 HU, W = 500 HU).

Normalized MAR (NMAR) FSMAR: Scheme
N lized sinos ::: o"m,: ol. &

1E. Meyer, M. KachelrieB. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 20
2E. Meyer, M. Kachelrie3. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012. z.



Summary on Deep MAR

« Most common uses for networks:
— Improve image quality in image domain after MAR
— Use network for the sinogram inpainting
— Produce a prior image, e.g. for NMAR

 Additional observations:

— Training data are often produced by segmenting an artifact-free CT
iImage, adding metal and applying a polychromatic forward projection to
different types of tissue separately.

— As of today, it seems hard to outperform NMAR, or hard to give
convincing clinical examples.




Deep learning -based sinogram extension method for interior Evaluation of novel Al-based extended field-of-view CT reconstructions

computed tomography !

i THeep Detruncati

Ketala Auuso HJ, etal. ‘Deap laarning based sinegramn extension mathod forineror someured towagraphy
Medical imagisy 2671 Physies of Medhear inaging. Ved 11595, intermatienal Society for Optics and Phetsoies, 2021

Kietsla, A0uso K. o1, "Deap lederiing dased sinogran exteasion mehod for insecior somputed seography Fonseca Oabriel Parve, o sl “Evalustion of sovel Al based extesdes Sukd of view CTrecossructions.
Mrswieal maglog 2021 Physics of Medea inagiog. Ved. 11635, mtermational Society for Optics and Phetomics, 2021 s Medieal Phyaies (2021), 7

Data Extrapolation From Learned Prior Images
for Truncation Correction in
oo/ Computed Tomography

HDFov
(conventional)

Network inget bmagn jeowork Output i WOweal o Kmuit image

(direct comd

sebiraction comb )

Fomseca Gabriei Pave, e sl "Evalustion of sovel Albas CTewe X Fenseca. Gabriel Pawa, et ol "Evafiation of sovel Al-ba: ew C 2 Haang, Yisisg. wtal. “Dats Exirapolation froe Laarmed Prise irages for Truncaton Correstion bn
Medical Phiysies {2021). dical Phiysi omeuted Tomegrasty * EEE Transactions oo Medcal imagng |7021) i

Data Consistent CT Reconstruction from Results
Insufficient Data with Learned Prior Images

Yixing Huang, Alexander Prewhs, Michael Manhan, Guenter Lauritsch, Andress

Input: WCE-precorrected image
Output: corrected image

Corrected Image Is then forward-projected and the
projections are combined with the original raw data.
Finally, the combined data are reconstructed iteratively.

Huang. Yiting, wtal. "Dats Ectrapalstion frem Luam krages for Truscation Correctizn in
Computes Tomegrashy * ] 23c9073 0n Medcal dmagng (2021)

Huang, Yixing. et al “Osts cen: T reconatructon frem msuMicient dts with leames sror dkfz
2

Images.” ariiv proprint arXiv. 250510039 {2020).



Deep learning -based sinogram extension method for interior
computed tomography
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Ketola, Juuso HJ, et al. "Deep learning-based sinogram extension method for interior computed tomography." dkf
Medical Imaging 2021: Physics of Medical Imaging. Vol. 11595. International Society for Optics and Photonics, 2021. ZQ



Figure 3. Example reconstructions. a. Original data from scanner. b. Adaptive de-truncation followed by filtered
backprojection. ¢. Total variation regularization. d. Filtered backprojection. e. FBPConvNet. f. Our Method. Reconstructions
have been masked to contain the region-of-interest.

Ketola, Juuso HJ, et al. "Deep learning-based sinogram extension method for interior computed tomography." dkf
Medical Imaging 2021: Physics of Medical Imaging. Vol. 11595. International Society for Optics and Photonics, 2021. Z.



Evaluation of novel Al-based extended field-of-view CT reconstructions
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Measured _ 4 i | Virtual CT

CTrawdata | geconstruction e ' 1 Forward raw data
S : <

with de- vo 7 4 Se 7 projection:
truncation. Only ~arg TR Simulate virtual

measured data is CT scan.
backprojected. Initial Reconstruction CNN Estimate of the

Patient

Mixing: Measured data where 1
> available, virtual CT data outside
L the detector I

Final reconstruction

Final Reconstruction

Fonseca, Gabriel Paiva, et al. "Evaluation of novel Al-based extended field-of-view CT reconstructions."
Medical Physics (2021). dk Ze



Network Input Image Network Output Image HDeepFoV Result Image

Fonseca, Gabriel Paiva, et al. "Evaluation of novel Al-based extended field-of-view CT reconstructions."
Medical Physics (2021). dk z.



Original Truncated

h, FOM

Truncated

/ region

'3
P R e
L : C =0 HU, W = 1000 HU

K. Sourbelle, M. Kachelrie3, and W.A. Kalender, “Reconstruction from truncated projections

in CT using adaptive detruncation,” Eur Radiol 15:1008-1014, 2005.



Summary on Deep Detruncation

 No need for machine learning to restore the gray
values within the FOM

* Image domain cosmetic detruncation can serve as an
Intermediate step to detruncate CT data.




Deep Scatter Estimation

277

In real time?




Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to
physical interaction probabilities.

» Simulating a large numbr~- ries well

approxim=#-~- 1 hour da,‘..a se‘\'.

h\c soTiiplete scatter
rap iR




Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
Input: ] 384 x 256 x 4 scatter estimate

g

Downsamplin e‘- -\-_omograp

and applicatio. 50 Upsampling
of operator O to or_|g|nal
T(p) Size
48 x 32 x 160
24 x 16 x 320

O- 3 x 3 Convolution, RelLU

12 % 8 x 480 ®» 1x1 Convolution, ReLU
—0O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 -O- Depth Concatenate

Projection data

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
&

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Testing of the DSE Network for
Measured Data (120 kV)

DKFZ table-top CT

Measurement to be corrected

| &

X-ray source

1

N | Detector
A

* Measurement of a head
phantom at our in-house

table-top CT. CoIIimatorI (’\\

e Slit scan measurement o ——
serves as ground truth. X-ray source I L

Ground truth: slit scan

Detector

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Reconstructions of Measured Data

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Slit Scan No Correction

CT Reconstruction

Difference to slit scan

C=0HU, W=1000HU

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

Truncated DSE

40 x 40 cm?
flat detector

Ground truth Uncorrected MC-corrected DSE

40 x 40 cm?2
flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelriel3 et al.
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Scatter in Dual Source CT (DSCT)

i 3 - \‘
Siemens SOMATOM Force
dual source cone-beam spiral CT

Iprimary + Sforward + p Scross
1o

qg=—1In

Ground Truth Forward Scatter Cross-Scatter Forward
+ Cross-Scatter
. e e G - e T o "‘.‘n
P s ‘ ‘ 7~ s\ ‘ ! Ve ‘-\‘\ p & .
e / e { ‘ ( ‘
\ ] ) b
’ ’\ ‘ 3\ o ‘é ,\‘\ '!-
) SCARY Uy

C =40 HU, W = 300 HU, with 2D anti-scatter grid



Scatter in Dual Source CT: xDSE

Ground Truth Uncorrected XxDSE (2D, xSSE) Measurement-based
MAE =42.6 HU MAE =4.9 HU MAE =10.6 HU vl

xDSE (2D, xSSE) maps
primary + forward scatter + cross-scatter + cross-scatter approximation — cross-scatter

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU
J. Erath, M. Kachelriel3 et al. Deep learning-based forward and cross-scatter correction in dual dkf
e

source CT. Med. Phys. 48:4824-4842, July 2021.



Scatter for Coarse ASG

Energy-integrating Photon-counting = Primary radiation
detector detector Scatter measured by the detector
Scatter attenuated by the ASG
Conventional ASG Coarse ASG
Each pixel Several pixels
surrounded surrounded
by ASG by ASG

ASG

The coarse ASG leads to changes in scatter intensity between neighboring
pixels, depending on the incident angle of the photon.

J. Erath, M. Kachelriel3 et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. dkfz
o

Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.



rour subpixels ) Scatter for Coarse ASG

merged to one
macropixel (M) Scatter distribution averaged over all detector rows

M(0,0) M(1,0)

M(0,1) —M(1,1)

M(0,2) M(1,2)

—
left right MC Simulation

Detector columns

J. Erath, M. Kachelriel3 et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT.
Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022. dkuO



Scatter for Coarse ASG

left right Scatter distribution averaged over all detector rows

M(0,0) M(1,0)

M(0,1) —M(1,1)

M(0,2) M(1,2)

[E— — —— left columns
left right —— right columns

Detector columns

J. Erath, M. Kachelriel3 et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT.
Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022. dkuO



Scatter Artifacts of Coarse ASG

Conventional ASG Coarse ASG

Coarse ASGs can lead to scatter-induced moiré artifacts.

Reconstruction: C =40 HU, W = 300 HU



Network Architecture

1376x144 Each channel

Input mapping corresponds to a
different pixel position
between the lamellae of

Merging 6 different channels to
obtain total scatter correction term

/i rimar Iéca er
p=—In (P 4 =00

0 0 the ASG
‘ WS EE IS Different macro pixel locations tOUtpUti 6 channels
M(0,0) B & 1
M(0,1) | B R |
M(1,0) . ! ‘ .
M(11) Il ! " i .
M(0.2)

M(1.2) B |

688x48x32 ‘ .I ‘| >| .I ’|
344x24x64
‘ ‘ 3x3 Convolution, Stride 2
172x12x128 I ‘ 3x3 Convolution, Stride 1
I‘I’I *h Unpooling + depth concat.
86x6x256
Iml =p| Skip connection

43%x3x512

J. Erath, M. Kachelriel3 et al. Deep scatter estimation for coarse anti-scatter grids as used in photon-counting CT. dkfz
o

Proceedings of the 7th International Conference on Image Formation in X-Ray Computed Tomography:190-193, June 2022.



Results in Reconstructed Images

Ground Truth Uncorrected

P

/7 a————

Simulated Reconstruction C = 0 HU, W =400 HU,
Difference to GT C = 0 HU, W = 50 HU dkfz.



Results in Reconstructed Images

Ground Truth Uncorrected
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Simulated Reconstruction C = 0 HU, W =400 HU,
Difference to GT C = 0 HU, W = 50 HU dkfz.



Conclusions on DSE

« DSE needs about 3 ms per CT projection (as of 2020).
« DSE is a fast and accurate alternative to MC simulations.
 DSE outperforms other approaches.

* Facts:
— DSE can estimate scatter from a single (!) x-ray image.
— DSE can accurately estimate scatter from a primary+scatter image.
— DSE generalizes to all anatomical regions.
— DSE works for geometries and beam qualities differing from training.
— DSE may outperform MC even though DSE is trained with MC.

« DSE is not restricted to reproducing MC scatter estimates.
It can be trained with any other scatter estimate, including
those based on measurements.

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
@

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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PAMoCo

Generate 2K+1 Partial Angle Reconstructions

Initial segmented stack volume

Subdivide the projection data p’ (1, &)
into 2K + 1 overlapping sectors

¢ p'(9,6)
k=0 “
Lad
0 — 180°
2A9

Partial angle reconstructions f(7)

f-r(7)

t ~ trot /2
res ™~ (2K+1)/2

FWHM = A¢ K=12

~ 10 ms

SI E M E N J. Hahn, M. Kachelriel3 et al. Motion compensation in the region of the coronary arteries based on dkf
partial angle reconstructions from short scan CT data. Med. Phys. 44(11):5795-5813, September 2017. z.



Deep PAMoCo

Network architecture Initial volume

(with motion artifacts)

L
f

NxN 64
8 8 16 16 16 Fully

Ni2 x Ni2 connected gy /%t S_12 o
16 32 232 neurons ’

Final volume
(no motion artifacts)

N/4 x N/4
32 64 64
N/8 x N/8
64 64

-

.'_'t

64 N/16 x N/16

’ 3 x 3 x 3 Convolution, Batch norm, ReLU ' 2 x 2 x 2 Max pooling :}} Flatten "“ Dropout (25 %)

FCN-Layer output: two control points for a cubic spline:
for k ==K, and for k = +K. The third control point at k =
0is (0, 0, 0), i.e. no deformation for the central PAR.

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based dkfz
o

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Results

Slice 1 Slice 2 Slice 3 Slice4

No Correction

Deep PAMoCo

C =1000 HU
W = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based dkfz
o

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Results

No Correction

Deep PAMoCo

C =1000 HU
W = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based dkfz
o

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Results

Slice 1 Slice 2 Slice 3 Slice 4
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No Correction

Deep PAMoCo

C =1100 HU
W = 1000 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie3. Deep learning-based dkfz
o

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Are the Methods Reliable?

« Studies about explainability of Alin CT image formation
are more than sparse.

* My thoughts:

— Cosmetic corrections: Unclear if noise reduction, metal artifact
reduction etc. is removing/adding lesions. The whole process is a
black box.

— Physical corrections: A clear physical meaning and rawdata fidelity
appear more reliable. Examples:

» MAR or detruncation networks where the NN output is used only to
forward project and inpaint/extrapolate the rawdata

» Scatter correction that estimates a smooth physically realistic
(trained with MC) scatter signal in intensity domain

» Motion correction networks that estimate motion vectors rather
than manipulating the voxel values



This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by
RayConStruct® GmbH, Nirnberg, Germany.



