« 256 slices
« (0/300)




Advantages of Cone-Beam Spiral CT

* Image quality nearly independent of pitch
* Increase

— of scan speed Wi = Q ;
— of z-resolution 8 : {% - §E ;‘
- New applications SRR

— CT angiography T _

— dynamic studies &\ AR
— virtual endoscopy .
— cardiac CT “ir? Wi
—~ DECT A

Today, complete anatomical regions are . R
routinely scanned with cone-beam spiral CT § =33
within a few seconds with isotropic sub- o 05845 :
millimeter spatial resolution. R T

—s
AL




Iterative Image Reconstruction




VY

£

(ajn T Amn)Q — Y

2 Z
T, + 2T ATy + XE, = Y

2 ~
05, i ZdE s ANIE ~ Y

Update
equation

Modified from Johan Nuyts, ,New image reconstruction techniques®, ECR 2012 dkfz.



Influence of Update Equation and Model

0.4(3 — z2)/zy,

1.74667
1.73502
1.73265
1.73217
1.73207
1.73206
1.73205

1.67823
1.68833
1.68723
1.68734
1.68733
1.68733
1.68733




Analytical Reconstruction

1. Problem p(, &) = /dajdy f(z,y)d(xcos?¥ + ysind — &)
2 Soution  f(z.y) = / 09 p(9. €) % k(€)
) E=x cos v+ysin
3. Discretisation f=R'-K-p=R"'. (k * p)
Classical Iterative Reconstruction
1. Problem p(, &) = /da?dy f(z,y)o(xcosv 4+ ysind — &)
2. Discretisation p=R-f
_R.
3. Solution foo1i=1F,+ R P Jo

R°.1




Linear System and CT System Matrix

R-f=p

Radon or x-ray image to be measured
transform reconstructed rawdata

/7“11 2 ... TlM\ /;;\ (101\

21 oo ... Topm P2

\mim m:\rz TJ\;M) \fM/ \p;v/




Kaczmarz's Method

R-f=p

N x M M x 1 N x 1
(71
r2
R=1 .|, r,| =1
\rv/

rnf:pn




Kaczmarz's Method (2)

- Successively solve r,, - f = p,
 To do so, project onto the hyperplanes

Tn - (f+)\rn) — Pn
A=p, —7Tn-f
JFrnew = F + Ary

Foew = F +7n(pn — 70 f)

- Repeat until some convergence criterion is reached
fl/—|—1 :fy_l_T’n(p’n_rn'fy)




Kaczmarz‘s Method (3)




Kaczmarz in Image Reconstruction:
Algebraic Reconstruction Technique
(ART)

fz/—i—l:fz/_l_rn(p’n_rn'fy)

174 — V—I_
f—|—1 f R2-1




Flavours of lterative Reconstruction

p—R-f
. ART 1=f,+R". /
.f+1 f RQ.]_

1 p—R-f
« SART — | R %

RT . (e R/

 MLEM fy—l—l — .fy RT . (G_p)

osc foo=f,+Ff L G
T TR (e RIR )

« and dozens more ...




Iterative Region of Interest (IROI)

4 ,.:r RN 4 ) forward project

»,w

0 0) ) (( 0 ———————

AN ' * 7 AN * 7

FBP FBP with clipped ROI

Axyg,; = 0.25 mm
reconstruct
analytically
. . reconstruct
| : iteratively

-

Sinogram ROI sinogram IROI reconstruction

A. Ziegler, T. Nielsen, and M. Grass, “lterative Reconstruction of Region of Interest for Transmission Tomography”, Med. Phys. kfz
d L

35 (4), Mar. 2008



lterative Reconstruction: Parameters

« Image/object representation

— Pixel centers -
— Pixel area f(:L‘, y) - E :fmb(x — LI, Y — ym)
— Blobs m

— Sampling density (pixel size, pixel locations, ...)

 Forward model (forward projection)
— Joseph-type, Bresenham-type, distance-driven-type, ...
— Needle beam (infinitely thin ray), many needle beams per ray, ...
— Beam shape (varying beam cross-section, angular blurring, ...)

— Physical effects (beam hardening, scatter, motion, detector sensitivity, non-
linear partial volume effect, ...)

« Objective function, update equation
— Statistical model (Gaussian, Poisson, shifted Poisson, ...)

— Regularisation (edge-preserving, ...) C(f) _ (R _ f o p) 2

— Artifact reduction

* Inverse model (backprojection)
— Transpose of forward model
— Pixel-driven backprojection
— Filtered backprojection




Image Representation




Image Representation




Image Representation




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Forward Model: Beam Shape




Image Representation and
Forward Model are Linked!

Joseph'’s forward projector




Objective Function: Gau3 Model

« Assume that the attenuation is Gaussian-distributed

L(A) = N(o,r f)

1

2 2
e P(A=a)= e 201/ with =1 f.

2o

« Consequently, the likelihood for all N measured
signals is (i, = 7y, - f):

A=a,f)= HP

+ Before maximizing take the log, penalize roughness,

L(f)=-Y (“’”%’“‘”)2 ~ BR(f)

n

and then find the image fthat maximizes L.




 This leads us to minimizing
(R-f-a)" D-(R-f-a)

which means solving
R" D - (R - f—a)=0

« This must be done numerically (e.g. Jacobi method)
and the solutions are often of type

foi1 =, +diag(u) - R" - diag(v) - (a— R - f,)

dkfz.



Update Equation: GauB3 Model

_R.fy
R?.1

. ART  f, ., =f,+R".2

1 p—R-f
- — | RrRL. 4
SART Jf..1=1. =T 1 .1

« and many more ...




Objective Function: Poisson Model

« Assume that the intensities are Poisson-distributed
L) =Ploe " T)

(;

which means P(/ =) = Ee—H with = Ipe™ " I

il
« Consequently, the likelihood for all N measured

signals is (u, = Ipe” 'n° f)

I=4f)= HP Mile_'un

« Before maximizing take the log, penalize roughness,

L(f) =) (inInpm — pn) — BR(F)

n

and then find the image fthat maximizes L.




Update Equation: Poisson Model

R . (e B 1))
R". (e—P)

« MLEM f,., = f,

R'. (e_R'fv — e_p)

"R" - (e RI.R-f,)

. OSC Jooa=F,+7

« and many more ...




Native OSC Converges Slowl

=0)

M 0

4
?mmn),rm
i
(0G1

|

|
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Proper Initialization Helps!

OSC 4, initialized with OSC 4, initialized with OSC 4, initialized with
constant value matched FBP smooth FBP

M 0

0G|=

Insufficient image quality Same noise as FBP than FBP

dkfz.



Ordered Subsets

 Divide one iteration into S sub-iterations.

- Each of these S subsets covers N/S projections.

* During one iteration all subsets and therefore all
projections are used exactly once.

 Per iteration the volume is updated S times (once per
sub-iteration).

- An up to S-fold speed-up can be observed.




Ordered Subsets
lllustration for N = 32 Projections

Conventional procedure without subets (S = 1)

0123 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Ordered subsets with S = 8 sub-iterations

0123 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31




Ordered Subsets

0g 29 30 31

N
(3]
N
(7]

2

23
22
21

i
il

()
, mmmum\HHHHHH

17
16

15
14
HHH“HHM
""‘w\\\\\\\HHHHHHN“H““ I§

13
127

11
10
9

o0}

"wuuum\“mmmm ”H““

~

No,.: 8
Projections = 32, Ordered Subsets: N
- Ngybsets =




Sequence Can be Generated Using
Simple Bit Reversal

-> 0

1 -> 16
2 - 8
3 > 24
4 —> 4
5 -—> 20
6 —> 12
7 -> 28
8 — 2
9 -> 18
10 -—> 10
11 -> 26
12 —> 6
13 —> 22
14 -> 14
15 -> 30
16 -—> 1
17 -> 17
18 -—> 9
19 -> 25
20 —> 5
21 -—> 21
22 -> 13
23 —-—> 29
24 > 3
25 -—-> 19
26 —> 11
27 -—> 27
28 —> 7
29 -> 23
30 -> 15

31 -—> 31




lterations

S =1 (no subsets) S = 32 (ordered subsets)

.

-

C=0HU, W= 1000 HU



Image Updates

S =1 (no subsets) S = 32 (ordered subsets)

C=0HU, W= 1000 HU



What Makes lterative Recon Attractive?

No need to come find an analytical solution
Works for all geometries with only small adaptations
Allows to model any effect

Allows to incorporate prior knowledge
— noise properties (quantum noise, electronic noise, noise texture, ...)
— prior scans (e.g. planning CT, full scan data, ...)
— image properties such as smoothness, edges (e.g. minimum TV)

Handles missing data implicitly (but not necessarily
better)

Phase-correlated Feldkamp High dimensional TV minimization’

’ v ik
- -
e o ¥ .
z 3
- -
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e
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X :
T -

A g

L. Ritschl, S. Sawall, M. Knaup, A. Hess, and M. Kachelrie, Phys. Med. Biol. 57, Jan. 2012 dkuo
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TOPICAL REVIEW
Why do commercial CT scanners still employ
traditional, filtered back-projection for image

reconstruction?

1
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Xiaochuan Pan'?, Emil Y bl(lk_\-" and Michael Vannier

! Department of Radiology MC-2026, The University of Chicago, 5841 S. Maryland Avenue,
Chicago, IL 60637, USA

2 Department of Radiation and Cellular Oncology, 5841 S. Maryland Avenue, Chicago,

IL 60637, USA

Received 23 September 2009
Published 1 December 2009
Online at stacks.iop.org/IP/25/123009

Abstract
Despite major advances in x-ray sources, detector arrays, gantry mechanical
design and especially computer performance, one component of computed

dkfz.



lterative != lterative

* In many cases artifact correction is iterative
— Higher order beam hardening correction
— Cone-beam artifact correction
— Scatter correction

* Practical “iterative reconstruction” approaches
— often use empirical solutions
— combine iterative with analytical reconstruction
— combine iterative or analytical reconstruction with image
restoration

Phase-correlated Feldkamp Low dose phase-correlated (LDPC) recon’

"o

A ) ) ’ ]
4 ~ '
e - .= « -

1S. Sawall, F. Bergner, R. Lapp, M. Mronz, A. Hess, and M. Kachelrie, MedPhys 38(3), 2011 dkflo




lterative Reconstruction

Aim: less artifacts, lower noise, lower dose

Iterative reconstruction
— Reconstruct an image.
— Regularize the image.
— Does the image correspond to the rawdata?
— If not, reconstruct a correction image and continue.

SPECT + PET are iterative for a long time. \!‘_
Until recently, the computational demand .

’

prohibited to use iterative recon in CT.

S
First CT product implementations 4'

— AIDR (adaptive iterative dose recuction, Toshiba)
— ASIR (adaptive statistical iterative reconstruction, GE)

— IDose (Philips)
— IRIS (image reconstruction in image space, Siemens) r ]
— VEO, MBIR (model-based iterative reconstruction, GE) =

— SAFIRE (sinogram-affirmed iterative reconstruction, Siemens)

dkfz.



Conventional reconstruction lterative reconstruction and restoration
at 100% dose at 40% dose

Images provided by Siemens Healthcare, Forchheim, Germany dk‘fz.



Conventional reconstruction lterative reconstruction and restoration
at 100% dose at 40% dose

Images provided by Siemens Healthcare, Forchheim, Germany dkflo



Conventional reconstruction lterative reconstruction and restoration

at 100% dose at 40% dose
‘ s N& ._——v .

Images provided by Siemens Healthcare, Forchheim, Germany



“a
N

' 100% dose T | 50% dose + IRIS

Image courtesy of Prof. Dr. Michael Lell, Erlangen, Germany



Summary

« Analytical image reconstruction
— Is compute efficient
— requires new solutions for new trajectories
— is what most images are reconstructed

with

- lterative image reconstruction
— requires much more computational effort
— allows to easily model constraints
— allows to incorporate prior knowledge

 Practical modern solutions

— often are a combination of analytical and
iterative recon

— are offered by the major manufacturers of
diagnostic CT

Images provided by Siemens Healthcare, Forchheim, Germany
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