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Fast Expectation Maximization Algorithm for Parameter 
Estimation of Finite Mixtures

Objective: To develop a fast method for the 
expectation maximization (EM) algorithm within the 
frame of parameter estimation of Gaussian and Poisson 
finite mixtures to be used in signal segmentation or 
classification of tomographic count data.

Methodology: Let f={fij} be the intensity values 
(pixels) of the reconstructed image and let us assume that 
f is a finite mixture over Ks disjoint, spatially connected 
image classes. Then we can define the likelihood for the 
image distribution

G(f|W,Q)=Pi,jSkswks p(fi,j|qks)

with the model parameters Q={qks} and the weights 
W={wks}, Skswks =1, which represents the ratio of the 
number of pixels in class ks and the number of image 
pixels. Commonly used statistical moments admitted in 
the parameter vector qks are the intensity mean mks and the 
standard deviation nks. The estimation of the model 
parameters of each class is carried out using a maximum 
likelihood expectation maximization (MLEM) approach.
In order to specify the relation between fij and ks, Liang 
and colleagues [1] introduced an unobserved indicator 
vector  zij={zks} which can be interpreted as conditional 
probability that fij belongs to class ks, by a given 
realization f as well as parameters W and Q. Note that 
Z={zij} spans a vector space with (N2Ks) elements. Since 
the solution trial is described completely with methods of 
statistics and a description of the image as a function of 
local indexes i and j within the EM algorithm is un-
necessary, the dimension of Z can be reduced drastically. 
Let H(f) be the image histogram defined by 
H(f)=cardial{i,j: fij=m}, then the EM algorithm can be 
applied to the histogram vector instead of the image 
matrix. Under this consideration, the dimension of the 
indicator vector zm={zks} is reduced to (MKs) elements 
with M=max{fij}-min{fij}. The value of zks can now be 
interpreted as conditional probability that the intensity 
value m (and so each signal value which satisfies fij=m) 
belongs to class ks by a given realization f as well as the 
parameters W and Q. Consequently, the likelihood 
function to be maximized is now defined by

G({m,zks}|W,Q)=PmSkswks p(m,zks|qks)

and the classical EM algorithm introduced by Dempster et 
al. [2] can be applied.

[1] Liang et al., IEEE TNS vol. 39, no. 4, pp. 1126-1133, 1997.
[2] Dempster et al., JRSSB vol. 38, pp. 1-38, 1977.

The formulation of this fast EM algorithm yields an 
significant improvement in computational time, although 
the total number of analyzed random variables has not 
changed. Estimated model parameters as well as the con-
vergence dynamics are identical to [2].

IEEE TNS vol. 44, no. 4, pp. 1583-1590 (Appendix), 1997.

240

100

200

120

140

160

180

220
m

t20151050

m3

m1

m2

n3

n2

n1

Dynamics of class mean and variance values 
during the EM process shown for K=3
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