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ABSTRACT
Motivation: Microarray technology provides access to ex-
pression levels of thousands of genes at once, producing
large amounts of data. These datasets are valuable only if
they are annotated by sufficiently detailed experiment de-
scriptions. However, in many databases a substantial num-
ber of these annotations is in free-text format and not read-
ily accessible to computer-aided analysis.
Results: The Multi-Conditional Hybridization Intensity
Processing System (M-CHIPS), a data warehousing con-
cept, focuses on providing both structure and algorithms
suitable for statistical analysis of a microarray database’s
entire contents including the experiment annotations. It
addresses the rapid growth of the amount of hybridization
data, more detailed experimental descriptions, and new
kinds of experiments in the future. We have developed
a storage concept, a particular instance of which is an
organism-specific database. Although these databases
may contain different ontologies of experiment annota-
tions, they share the same structure and therefore can
be accessed by the very same statistical algorithms.
Experiment ontologies have not yet reached their final
shape, and standards are reduced to minimal conventions
that do not yet warrant extensive description. An ontology-
independent structure enables updates of annotation
hierarchies during normal database operation without
altering the structure.
Availability and supplementary information: http:
//www.dkfz.de/tbi/services/mchips
Contact: k.fellenberg@dkfz.de

INTRODUCTION
Microarray analysis provides insight into the transcrip-
tional state of the cell (transcriptome), measuring RNA
levels for thousands of genes simultaneously (DeRisi et
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al., 1996; Khan et al., 1999; Brown and Botstein, 1999;
Lockhart and Winzeler, 2000). This is done by hybridiz-
ing a labelled RNA sample to an array of either ‘spotted’
cDNA fragments or of oligonucleotides synthesized ‘on
chip’ (Lennon and Lehrach, 1991; Schena et al., 1995;
Schena, 1996; Shalon et al., 1996; Lockhart et al., 1996).
Ongoing sequencing projects promise to yield complete
gene sets of most model organisms in the near future
which can then be mounted on DNA chips. However, the
data produced need to be stored in a proper way to allow
for global comparison (Basset et al., 1999). This applies
not only to the signal intensities for each item in an array
but also to all available descriptions of the sample the RNA
has been derived from, and all details of its treatment.

Several database projects are currently addressing these
questions. While ExpressDB (Harvard, Aach et al., 2000)
aims at storing data from nearly all available platforms,
i.e. cDNA and oligonucleotide chips as well as SAGE, a
different focus has been to develop systems for consistent
description of the samples used and the genes mounted
on the array, e.g. in GeneX (http://www.ncgr.org/research/
genex/; NCGR), GEO (http://www.ncbi.nlm.nih.gov/geo/;
NCBI), ArrayDB (NHGRI; Ermolaeva et al., 1998),
ArrayExpress (EBI; Brazma et al., 2000), and RAD
(http://www.cbil.upenn.edu/RAD2; UPenn; Stoeckert et
al., 2001), the last one combining both objectives.

However, most of the valuable information contained in
experiment annotation is currently not taken into account
for analysis. This is due to the fact that the annotations
are stored in a way not readily accessible for multivariate
statistical methods. Frequencies of annotation values, e.g.
within a set of experiments clustered by their expression
patterns, ought to be computable. Misspellings, different
textual representations of semantically identical items,
and, vice versa, ambiguous words the meaning of which
depends on the context, interfere with counting such
values. For this reason we have developed a system that
both ensures consistency of annotations and circumvents
the difficulties of free-text parsing. With the exception
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of numerical values, our annotation system is entirely
categorical, allowing to choose only among predefined
enumeration-type values which can be readily analyzed in
an automated fashion.

In order to keep our annotation concept flexible enough
to include easily new attributes as well as new values,
without the need to alter the analyzing algorithms, we
store the definitions for the annotations and their allowed
values as separate tables in the database linked to the data
tables, thus avoiding a fixed, ‘hard-wired’ structure that
would be difficult to extend.

Here we present a storage and analysis concept called
Multi-Conditional Hybridization Intensity Processing
System (M-CHIPS). It has been implemented as a set of
organism-specific databases, namely for Saccharomyces
cerevisiae, Arabidopsis thaliana, Trypanosoma brucei,
Neurospora crassa and human tumor samples. While
differing in the annotations used to describe the samples,
these databases share a common structure and thus are
accessed by the very same analysis algorithms. The
concept is able to integrate all kinds of intensity data
obtained from cDNA microarrays. It has been tailored for
the need of the collaborating groups which use cDNA
microarrays with either single-channel radioactive or
multichannel fluorescence readout.

In a classical data warehouse, data are held in one
or several databases. A warehouse then collects data
from their storage databases and makes them fit into a
unified data model (Ballard et al., 1998; Schönbach et
al., 2000). Typically, a warehouse will collect only a few,
‘important’ attributes from each dataset. Such operations
like transformations and extractions are recorded as meta
data. It may be denormalized, i.e. it allows for redundancy
in order to avoid frequent joining from distinct tables.

Designed to assist analytical tasks rather than pure
data storage, we consider M-CHIPS a data warehouse.
It integrates different data sources and data formats into
a denormalized structure, records meta data and enables
unified access for analysis algorithms. However, there are
no underlying so-called ‘operational’ databases, and data
are directly entered into M-CHIPS. Thus, analysis may
be carried out immediately, enabling instant decisions
about follow-up experiments. There is also no loss of
information in experiment description. Annotations are
not extracted by compliance to minimal standards, but
entered directly at a level of detail chosen by the experi-
menter defining the annotations. All annotations are in an
analyzable form that avoids text mining, which frequently
results in information loss.

DESIGN REQUIREMENTS
The contained data can be divided into raw signal inten-
sities, gene annotations and experiment annotations. The
last display the most complex structure among these.

Signal intensities
Since processing algorithms change rapidly, raw intensity
data rather than processed values should be stored. Cur-
rently, image analysis itself cannot be carried out without
human interaction. Therefore, analysis should start with
raw signal intensities performing processing steps like
normalization and filtering on-the-fly. A hybridization
yields a simple although huge list of intensities and
background values for every spot on the array. These
could, in principle, be stored in records or in so-called
‘binary large objects’ inside, or even in flat file format
outside the database. However, it would not be possible to
select subsets of data passing criteria like intensity thresh-
olds or to perform simple calculations on the database
level. Such calculations may be necessary in the future
in order to normalize huge datasets and to extract from
the normalized data when they do not fit into computer
memory, suggesting storage of intensity data in database
tables. The system should be flexible enough to store
intensities stemming from both monochannel (radioactive
label) or multichannel (fluorescent label) hybridizations.
Signal intensities obtained by radioactive labeling do
not represent the same quantities as those reflecting
competition of differently labeled hybridizing cDNA
populations. For the former, absolute signal intensities
should be proportional to the amount of mRNA molecules
in the target. For the latter, low intensity for a particular
channel may result either from low mRNA concentration
for this channel or because the binding sites on the array
are taken by high amounts of differently labeled mRNA,
to give an example. Preprocessing algorithms should be
able to recognize the difference and automatically apply
suitable methods, e.g. for normalization.

Gene annotations
Gene annotations may consist of clone numbers, acces-
sion numbers and heterogeneous information like chromo-
somal location, enzyme categorization number or struc-
ture of the encoded protein. Since the only unique identi-
fier for a spotted DNA fragment is its sequence, the most
important information is a link to a sequence database,
which also holds the additional information. Furthermore
the possibility to divide the gene set into partitions should
be provided. This information turns out to be necessary to
normalize separately certain sets of spots, e.g. when they
have been hybridized separately.

Experiment annotations
Experiment annotations may comprise, e.g. the descrip-
tion of environmental conditions, genotypes, clinical data,
type of tissue, estimated degree of contamination by other
cell types, or the sampling method. Annotations related
to the hybridization protocol, properties of the individual
array or imaging process are contained, too. They fall
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into two classes: first, there are common annotations that
are useful for all fields of interest. These are technical
annotations like array characteristics, descriptions of
labeling, hybridization or washing conditions, and of
signal detection. This set of annotations should be the
same for all kinds of microarray experiments. Second,
there are organism-specific annotations that meet the
differential requirements of the specific research areas
such as ‘transgene’ and ‘growth phase’ for yeast or ‘tumor
type’ and ‘metastasis location’ for tumor samples. Both
common annotations and multiple organism-specific
annotation sets should be stored in a unified structure
such that they can be annotated and queried by the
same algorithms. Otherwise, algorithmic efforts would
not be feasible for many different kinds of microarray
experiments.

All experiment descriptions should be directly acces-
sible to statistical analysis. This can be achieved easily
when data are not entered as free text but in a categorized,
queryable form. This allows for application of multivari-
ate procedures for correlating expression data and annota-
tions.

To make all experiment descriptions directly accessible
to statistical analysis, we permit only two types of
experiment annotations, either numbers of predefined
unit or values from predefined lists. If we, e.g. let
an annotation ‘growth phase’ be an enumeration-type
variable comprising the defined values ‘exponential,’
‘stationary’ and ‘pseudo-hyphal,’ the occurrence of the
value ‘exponential’ can be counted within a set of
hybridizations clustered by their expression profiles and
compared with its overall frequency to determine whether
it is characteristic, i.e. either over- or under-represented in
the cluster.

While in free text descriptions the number of occurences
of a value are not directly countable, dispensing with free
text also causes problems. An arbitrary-length free text
field allows to annotate each possible value and may also
take any number of such atomic pieces of information.
In contrast, the type of annotation described above is
restricted to predefined values. New annotations and/or
new values for existing annotations have to be added
constantly as new experiments are designed. This requires
the ability to define new annotations rapidly without
altering the database scheme, i.e. during normal database
operation. Absence of highly flexible free text annotations
has to be compensated for by increased flexibility in
database storage.

DATABASE IMPLEMENTATION
Here we sketch how these concepts have been imple-
mented in our databases. A detailed description can be
found in a technical report on the associated web page
(http://www.dkfz.de/tbi/services/mchips). The data cat-

egories mentioned above, namely raw signal intensities,
gene annotations, and experiment annotations, were
taken as a basis for implementation. Figure 1 shows the
corresponding tables in yellow, blue and red, respectively.

Different array types and gene annotations
A database may comprise several microarray ‘families’
that each consist of the entirety of Multiconditional
Experiments (MCEs) carried out with the same microarray
spotting scheme. A microarray family is endowed with
its own set of gene annotations that reflect this spotting
scheme and include a key recording the above mentioned
partitions. The gene annotations are linked both with
the expression intensities and with public external gene
databases in order to enable explicit characterization
of genes showing a particular expression behavior (see
Figure 1).

Transcription intensities and query performance
While the tables containing the gene annotations have
only as many tuples (table rows) as there are genes,
transcription intensities add up to this number of entries
for each single measurement (see one-to-many relations in
Figure 1). A measurement may comprise a hybridization
in case of monochannel experiments, or a single channel
of a multichannel hybridization. Experiment schemes (see
Figure 1, green tables) record for each measurement,
to which hybridization and experimental condition it
belongs, and in which MCE this condition is contained.
Gene and experiment annotations on average only take
0.35% of the storage space. Since this amount is far too
small to be relevant for query performance, flexibility
remains the only time-saving aspect related to experiment
annotations. Performance considerations are related only
to the hybridization intensities. Among all intensities,
analysis focuses on gene-representing spots as opposed to
empty spots and various kinds of controls. For this reason
we use different tables to store these kinds of intensities.
In Figure 1, these tables are shown in yellow.

Fast querying of tuples is mediated by so-called indices,
which immediately guide the search to the specified
tuples. If all measurements were stored in one big table
per category, adding a new measurement would be slow
because of the time necessary for recomputing the indices.
Therefore, new measurements are inserted as separate
tables, computing indices only for the new tuples.

However, database search is slowed down by increas-
ing the number of separate tables because there is no
global index immediately guiding the search to the table
containing the tuples. Although high performance for
write/delete operations is achieved, read access is slow
for a large number of separate tables. In order to optimize
both writing and reading operations, we write or delete
measurements as separate tables, but read from large
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Fig. 1. UML scheme of an M-CHIPS database. The tables are arranged and color coded according to the categories mentioned in the text.
Overlapping tables show identical structure. Arrows indicate table inheritance. All child tables in our databases have the same structure
as their parents. The database management tables (in green box) show the array families y1, y2 and y3 (e.g. three different types of yeast
arrays). Outside the green box, all tables belonging to a particular array family are represented by those belonging to the first one, names
starting with y1. Other families comprise identically structured tables. The number of tables within an M-CHIPS database thus varies with
the number of comprised array families. It also depends on how may uploaded measurements already have been assembled into a block table.
M-CHIPS operates on a unified storage concept for standardized algorithmical access rather than on a fix database structure.

‘block’ tables that are filled by overnight jobs collecting
measurements that are not to be altered or deleted. Thus,
computation of large indices is performed at times of
low traffic as an investment in query performance. We
use table inheritance as an elegant aid in keeping track
of both single and block tables. Since every access to the
intensity tables is directed via one of the parental tables,
query syntax does not change with merging a set of tables
into one block. This block will be a child of a specific
parental table as are the tables to collect (see Figure 1,
small yellow tables).

On a SUN E450 server under Solaris 2.7, a Post-
greSQL 6.5.3 server process retrieves 2 consecutively
uploaded hybridizations (comprising 6103 yeast genes in

double spotting) out of 686 ones stored in separate tables
on average in 85 s. The same query performs in 2.3 s, if
the 686 hybridizations are assembled into one big table.
Even to retrieve two out of 2251 hybridizations takes only
2.8 s when all hybridizations are en bloc.

Experiment annotations
To achieve direct access for statistical methods to all
experiment descriptions, they have been dissected into
atomic items that can be represented by either numbers
of predefined unit or values from predefined lists. To
meet the flexibility requirements described above, the
annotations are contained in tables rather than in the
database structure itself. The web-based annotation pro-
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cess (described below) involves reading these definition
tables and recording the entered numbers or selected
values in annotation tables.

Definition tables. A separate database is maintained
for each organism or field which contains particular
definitions of experiment annotations appropriate for the
attended samples. We provide annotation definitions for
S. cerevisiae, A. thaliana, human tumor biopsies, T. brucei
and N. crassa on our web page (http://www.dkfz.de/tbi/
services/mchips). Each database comes with a certain set
of experiment–annotation definitions that are ‘organism-
specific.’ However, some, mostly hybridization–protocol
related, ‘common’ annotations are used in all databases.
To facilitate inter-field analyses for the future, we try
to keep this share as large as possible. New common
annotations are added to all databases automatically by
means of administration scripts. Each annotation has a
unique identification number. They are stored as a linked
list including an attribute pointing to the ID of the
annotation next in sequence. This structure enables adding
of annotations at arbitrary positions by linking the desired
ancestor to a new element that points to the ID of the
element following in that list. In a similar manner the
whole set of defined values is stored by a second linked list
within the same table. Hierarchical structure of annotation
ontology is recorded by the content of a second table.
Table 1 gives an example, listing the first part of the
common annotations.

The structure of both tables is denormalized for visual
clarity. Since the normalized form, consisting of separated
tables, would be queried exclusively by joining them,
we directly implemented the joins as database tables.
Such redundancies, though not common for databases, are
frequently used in data warehousing.

The contents of these tables are used as meta data by
the web-based user interface to compile multiple-choice
forms like those in Figure 2. The results of the annotation
process are stored in annotation tables.

Annotation tables. A MCE consists of at least two
different experimental conditions, differing e.g. in growth
conditions, tissue type or genotype of the biological
material under study. Each of these conditions comprises
several repeatedly performed measurements. Such a
measurement may represent a hybridization in case
of radioactively labeled targets or a single channel of
a multichannel fluorescence signal. The experiment
schemes storing which of these measurements belong
to which experimental condition also record which of
them were performed simultaneously onto the same
array. Most of the experiment conditions are constant
for an entire experiment, some are condition-dependent
or measurement-dependent, i.e. they can take different
values for each condition or measurement. This gives

the designer a choice of storing the annotations either
according to these three categories or measurement-wise.
While data import by the user is easier when following
the first scheme, the latter is preferable for statistical
analysis. We decided to store the three sets in separate
annotation tables for convenient algorithmical handling
(see Figure 1, red tables, names beginning with ‘y1’);
Merging the tables for each measurement is easy, whereas
splitting up measurement-wise stored annotations would
require repeated value comparison.

ALGORITHMS
The database was designed to be charged and queried
by the experimenters themselves using algorithms which
mediate upload and annotation of experiments, as well as
data analysis. M-CHIPS consists of C, Perl and MATLAB
functions. We intend to make the complete M-CHIPS
source code available, as well as SQL statements creating
a sample database.

Experiment annotation
Experiments can be annotated from remote by the exper-
imenters themselves using a web interface. Annotation
appears to be a time-consuming process, if hundreds
of experimental parameters have to be entered for each
single measurement. For this reason, we provide the
possibility to select annotations that are constant or
condition-dependent as defined above and that have to be
entered only once, in contrast to measurement-dependent
annotations. Furthermore, it is possible to copy the whole
set of annotations from a similar experiment and edit only
the differing ones. Few parameters should be varied per
condition, so the majority of the annotations is constant
throughout the experiment. Among these, the majority is
constant not only for one particular experiment, reflecting
more or less constant execution of the same protocols
for e.g. hybridization and washing. The annotation
process is sketched in Figure 2. It is possible to enter
detailed descriptions (111 annotations) of large MCEs (24
measurements) in less than 15 min.

Preprocessing
In M-CHIPS, preprocessing starts with normalization of
raw signal intensities. The normalization is based on
robust affine-linear regression of one measurement versus
a control measurement (see below). The performance
may be judged from the scatterplot of the raw data
(measurement versus control measurement). In this plot,
a regression line represents the multiplicative distortion
and additive offset determined by the fitting algorithm.
The performance of the fit is visible in how well the
regression line matches the central dense parts of the
cloud. Furthermore it can be observed, which properties of
the raw data led to an eventual suboptimal result. The scale
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Table 1. Example for experiment annotation definitions

Two SQL statements are listed along with the first few rows of their results. The first one

shows the content of a table named annotationheadings (topmost red in Figure 1). These

headings serve to hierarchically structure the annotations into sections. This table is

linked to the second one through ‘heading3no,’ here named ‘lastheadingno,’ because the

nesting depth is arbitrary and may be decreased or increased in other databases. The

annotations are stored in the second table (named ‘annotations,’ see Figure 1) along with

their allowed values. The attributes ‘ano’ and ‘vno’ are used as IDs to reference

annotations or their values, respectively, as described above. The attributes ‘nextano’ and

‘nextvno’ point to the next entry, thus implementing the linked-list structure. Values that

contain square brackets are not categorical but are meant to take a number, e.g. a

production batch ID. If a unit can be defined for the value, it will be listed within the

brackets.

of the plot can be switched between linear and double-
logarithmic. In log scale the regression line appears as a
curve the curvature of which depends on the additive offset
between the two measurements. We use two algorithms
as described in Beißbarth et al. (2000) and Fellenberg et
al. (2001). For both, the set of trusted spots of unvaried
expression taken into account for fitting can be specified
(housekeeping genes, external controls, or entire set).

M-CHIPS discriminates between mono- and multi-
channel experiments. For the former, each measurement

is normalized versus the genewise median of the hy-
bridizations for the control condition, resulting in absolute
intensities. For the latter, the channel belonging to the
control condition serves to normalize the other channel(s)
of the same hybridization, resulting in intensity ratios.
For many arrays and experiments, the majority of genes
spotted on the array is not expressed to a measurable
amount. While displaying notable ratios due to mea-
surement fluctuations, they can be eliminated by means
of an intensity filter. To compute intensity levels from
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MCE 10

MCE 11

MCE 12

MCE 13

measurement dependent

edit differences

a similar MCE

constant annotations

copy defaults from

condition-dependent and
Annotation

definitions

’headings’

annotation of measurement-

Definitions Annotations for selection and separate

Annotation

condition dependent

constant annotations

Fig. 2. Experiment annotation process. The annotation process may start with copying default values from the most similar MCE. Secondly,
from the complete list of defined annotations the measurement-dependent ones are selected and then annotated for each single measurement.
Afterwards, from the remaining annotations, those being condition-dependent for the particular experiment are choosen and annotated for
each experimental condition. For the constant annotations, it suffices to edit few differential ones, if the questionaire is prefilled with default
values copied from a similar experiment. Compare the HTML form for the constant annotations with Table 1.

multichannel ratios, these ratios are multiplied with an
average control measurement, being the genewise median
of the absolute values of the control channels.

Apart from intensity and ratio filters, reproducibility
measures (Beißbarth et al., 2000) are applied to extract
genes that are reproducibly up- or down-regulated. These
measures integrate repeatedly performed measurements
for the same experimental condition. In addition, they are
plotted versus the average intensity level and ratio as a
measure for quality control.

Statistical analysis
Analysis techniques include hierarchical clustering (Eisen
et al., 1998), correspondence analysis (Fellenberg et al.,

2001), and statistical analysis of experiment annotations
for arbitrary sets of hybridizations, e.g. those clustered
by similar expression profiles. Comparison of different
visualizations of a dataset are facilitated by highlighting
data points which have been selected in another plot.
It is also possible to mark all genes bearing a certain
keyword like ‘cell cycle’ in their gene annotation or to
import multiple sets of gene tags from text lists. In the
correspondence analysis plot, several disjoint gene sets
can be visualized by different color, e.g. to highlight
different functional categories or to mark interesting
clusters of genes. For the latter, gene sets can be selected
by encircling them by mouse clicks. Expression profiles
of marked genes can be displayed in a parallel coordinate
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Fig. 3. Oxidative stress. The correspondence analysis plot shows
a dataset recorded from wild type yeast cells responding to 0.2 M
hydrogen peroxide in the medium. Genes are depicted as black dots,
measurements (in this case monochannel hybridizations) are shown
as squares, color-coded according to the experimental condition
(here time point) they belong to. Further explanation is given in
the text and in the supplemental material. The outlying cluster of
yellow labeled measurements is further characterized by experiment
annotation values over- or underrepresented in this cluster as shown
in Table 2.

plot. In the same manner clusters of measurements can be
selected and plotted. Moreover, they can be automatically
scanned for significant experiment annotation values. For
each value of every annotation, instances of occurrence
are counted. For a particular value, its frequency in the
cluster is determined as the number of its occurrences in
the cluster divided by the number of measurements in the
cluster. Comparison to its frequency in the whole set of
measurements under study reveals whether it is over- or
underrepresented in the cluster. An example is shown in
Figure 3.

A time course has been recorded for wild type S. cere-
visiae cells under oxidative stress by 0.2 M hydrogen
peroxide. Data have been preprocessed and visualized by
correspondence analysis. Experimental and computational
details are given in the supplemental material on our web
site (http://www.dkfz.de/tbi/services/mchips).

The plot comprises both genes and measurements. The
genes are depicted as black dots. Measurements are shown
as squares, color-coded according to the experimental
condition they belong to. There is one outlying cluster
of measurements belonging to the 30 min timepoint
(yellow), whereas other measurements of the very same
condition are located in a distant area, clustering with
other timepoints. Selecting these outliers, searching for at

least 2-fold over- or underrepresented annotation values
results in values belonging to only eight out of 111
annotations (see Table 2).

The first two annotations listed provide the information
that the entire cluster was hybridized on array individual
six which is the only one stemming from array series (i.e.
production batch) 59, whereas all other arrays were of
series 61. From other experiments, we generally observed
sufficient comparability among arrays of the same produc-
tion series, whereas arrays of different batches could not
be directly compared. To show the distorting effect of this
artifact to an otherwise revealing dataset, we provide a
correspondence analysis plot calculated from this dataset
without the outlying measurements in the supplemental
material. The other six extracted candidates proved to be
unable to characterize the selected cluster as described
also in the supplemental material.

Sometimes, especially with higher numbers of measure-
ments, it is desirable to aggregate values for annotations
of continuous range (see no. 16 and 17 in Table 2). ‘Label
incorporation rate’ may thus be discretized into e.g. low,
medium and high values. We provide methods enabling
discretization of annotation ranges into a chosen number
of bins due to their particular distribution or by expert
knowledge.

DISCUSSION
The M-CHIPS concept allows information from hetero-
geneous experiments to be stored in databases of similar
structure so that the same algorithms for analysis can
be applied. The system has been used by collaborating
groups since June 1999. Thus, all algorithms described
above have been extensively tested. Currently we have
33 yeast specific (MIAME compliant; http://www.ebi.ac.
uk/microarray/MGED/Annotations-wg/index.html), 54
human tumor specific, 71 arabidopsis specific (MIAME
compliant), 41 trypanosome specific, 20 neurospora
specific and 78 common (technical, MIAME compliant)
experiment annotations. Compliance with standards
such as e.g. those proposed by EBI (MIAME) is in-
dependent from our storage schema. The experimenter
defining the annotations decides about standard com-
pliance and level of detail. The sets of hierarchically
ordered annotations are listed on the associated web
page (http://www.dkfz.de/tbi/services/mchips). The entire
descriptions of all hybridizations stored in our databases
can be analyzed statistically. We currently keep 1659
hybridizations in 12 databases. They belong to the above
five fields of research and comprise both radioactive-label
and multichannel experiments.

The storage system provides an unprecedented level of
detail for experiment description captured in categorical
and continuous variables. For data entry, this ensures
completeness of experiment annotation, i.e. a level of
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Table 2. Frequencies of characteristic annotation values

More than or exactly 2x over/underrepresented:

completeness exceeding minimal standards. For analysis,
it provides the capability to include experiment informa-
tion as additional variables, i.e. to study it by means of

multivariate statistics. Additional attributes or additional
allowed values for existing attributes can easily be added
without changing the database structure.
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Previously published microarray database concepts have
focused on the ability to include intensity data from differ-
ent platforms and to make these comparable (Aach et al.,
2000; Brazma et al., 2000). Some projects have started to
develop controlled vocabulary for experiment description
(e.g. ArrayExpress, RAD and GEO). However, little effort
has so far been made to categorize the descriptions down
to minute detail and make them amenable to analysis. As
our concept is not meant to be implemented in a large
public gene expression database, we have not dealt with
including additional platforms like oligonucleotide chips
or SAGE, but have concentrated on mining the wealth
of information contained in the experiment annotations.
However, we have been able to serve several collaborating
groups in providing databases and analysis tools for data
from different areas of research (i.e. experiments with
yeast, arabidopsis, T. brucei, N. crassa and human cancer
samples), obtained by different platforms (radioactive
hybridization to nylon or polypropylene membranes and
fluorescent hybridization to glass slides), and by means of
different imaging software.

Experiment annotation is web-based to ensure that any
experiment can be annotated from remote by the exper-
imenters themselves. Efforts for annotating experiments
are minimized. Data analysis comprises preprocessing,
e.g. different methods for normalization, the performance
of which can be visually checked, quality control plots,
and gene extraction by intensity, ratio and reproducibility
thresholds (Beißbarth et al., 2000; Fellenberg et al.,
2001). High-level analysis techniques include hierarchical
clustering (Eisen et al., 1998) and correspondence anal-
ysis (Fellenberg et al., 2001). Comparison of different
visualizations of a dataset are facilitated by shared gene
tags. It is also possible to mark all genes bearing a certain
keyword like ‘cell cycle’ in their gene annotation or to
import multiple sets of gene tags from text lists.

Statistical analysis of experiment annotations can be
applied for arbitrary sets of hybridizations by mouse click,
e.g. for those clustered by similar expression profiles. This
provides a means to reveal both experimental artifacts
and biologically meaningful correlations from huge sets
of experimental descriptions in an automated way. The
resulting experimental parameters are candidates for being
the active players which drive the cells to the expression
pattern observed in the hybridization cluster.

While this is a fairly simple method, it already provides
good analytical access to long lists of annotations and
huge sets of hybridizations, which could not be thor-
oughly evaluated by visual inspection. More sophisticated
statistical methods can be directly applied, too, because,
unlike with free text annotation, instances of occurrence
are readily countable for all annotation values. We con-
sider correspondence analysis particularly useful for the
exploratory analysis of microarray data. Future plans

comprise integrated visualization of both transcription
intensities and experiment annotations by multiple or joint
correspondence analysis, compiling the MATLAB code
to provide a homogeneous and easy to install software
package and implementing an XML interface for data
exchange with a public microarray data repository.
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