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* Introduce and discuss vendor-specific deep learning image
reconstruction/restoration algorithms.

 Make aware of potential pitfalls of DL noise reduction algorithms.




AIDR 3D PIQE

Canon PIQE

* Precise IQ Engine (PIQE).

 Trained on data from Canon’s Precision '
high spatial resolution CT 4

« Converts images from Canon’s standard
spatial resolution scanners (e.g. Aquilion f /
ONE / PRISM edition) to look like high '
spatial resolution images.
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The precise 1Q engine (PIQE) network
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Clinical Relevance Statement 83.3 88.5 88.0

With improvements in the diagnosticaccuracy of in-stent stenosis, CT angiography could
become a gatekeeper for ICA in post-stenting cases, obviating ICA in many patients after
recent stenting with infrequent ISR and allowing non-invasive ISR detection in the late phase.

Eur Radiol (2023) Kawai H, Motoyama S, Sarai M et al.; DOI:10.1007/s00330-023-10110-7

Kawai et al. Coronary computed tomography angiographic detection of in-stent restenosis via dkf
deep learning reconstruction: a feasibility study. Eu. Rad. (34):2647-2657, 2024 z.



Noise Removal Example 1

Input:
low-dose

Input (NxNx2)| CT images
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» Architecture based on state-of-the-art networks for image classification
(ResNet). Output: MSE
_ _ _ denoised loss function
« 32 conv layers with skip connections ST e g
« About 2 million tunable parameters in total e

: : : : : : : : Full-dose
Input is arbitrarily-size stack of images, with a fixed number of adjacent reference

slices in the channel/feature dimension.

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a

Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 1

Low dose images (1/4 of full dose)

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network

Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 1

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. dkfz
®

Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 1

Full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network

Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 1

Denoised full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. dkfz
®

Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 2
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Y. Wang et al. Iterative quality enhancement via residual-artifact learning networks for low-dose CT.
Phys. Med. Biol. 63:215004, 2018.
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Noise Removal: Canon‘s AiCE

« Advanced intelligent Clear-1Q Engine (AICE)

* Trained to restore low-dose CT data to match the properties of
FIRST, the model-based IR of Canon.

 FIRST is applied to high-dose CT images to obtain a high fidelity
training target

Training AiCE — Deep Learning

Anatomical
mmmmm

nnnnnnn

nnnnnn

model

Multiple Variations

Data Acquisition AiCE Image

= __ &
K. Boedeker. AiCE Deep Learning Reconstruction: Bringing the Power of Ultra High Resolution CT

to Routine Imaging. Whitepaper, Canon, 2019. dkfz.



U =100 kV

CTDI = 0.6 mGy
DLP =24.7 mGy-cm
Des = 0.35 mSv

M Courtesy of
S . Radboud ,
FIRST Lung (full'iterative) AICE Lung (deep Tearning the%etﬂgrlgmdcs



Noise Reduction: GE's True Fidelity

« Based on a deep CNN

Trained to restore low-dose CT data to match either
FBP images to match the properties of Veo, GE’s model-based IR (arXiV-Paper by GE)
— sinograms to match the properties of FBP (white paper by GE)

 No information in how the training is conducted for the product

2.5D DEEP LEARNING FOR CT IMAGE REC

Implementation.

ruth trainii

STRUCTION USING A MULTI-GPU

IMPLEMENTATION

Amirkoushyar Ziabari*, Dong Hye ¥

Jean-Baptiste Thibault *, C

* Electrical and Computer Enmneennﬂ at Purdue University

t Electrical and C umputer E

® Electrical Engineermg at University of Notre Dame

ABSTRACT

While Model Based Ite Reconstruction (MBIR) of CT
scans has been shown to have better image quality than Fil-
tered Back Projection (FBP), its use been limited by its
high \umpulatmnnl cost. More recently, deep convolutional

d at promhe in both de-

fast reconstruction al Jorlthm whi
IBIR (DL-MBIR), for approximati

ons that approximate true
ual convolutional neural
network implemented on multiple GPUs using Googl
sorflow. In addition, we propose 2D, 2.5D and 3D var
on lhe DL MBIR melhud and shov t the 2.5D method

astavat, Ken D. Sauer
. Bouman*

rvised Training

ning process includes training, validation, and testing, which The training process is outlined below:
at Marquett University P ervis?d_by GE Hea Ithcare CTimage quality experts and - The DLIR engine generates the output image from an input sinogram
ced radiologists. that is acquired with low radiation dose
The features of the temporary output image are compared to the
ground truth image to find the differences in terms of image noise,
noise texture, low-contrast resolution, high-contrast spatial resolution,
and other metrics

# starts with an objective task and selection of the training data,
cludes the input data to the neural network and the corresponding
8d output data. For each scanned object, both a high-dose,
Se dataset and a low-dose, high-noise dataset are acquired. Images
ructed with the high-dose dataset produce the ground truth. The
gine is applied on the low-dose datasets to produce an estimation
aconstructed images. Since the ground truth is known, it is used as
ing target for the deep learning-based reconstruction engine.

rojection views in CT

developed method

s into MBIR reconstruction

anced prior models using the Plug-and-Play framework
[11]

In this paper, we propose a fast reconstruction algorithm,

all Deep Learning
ing the |mpr0\ed quality of MBIR u.

Millions of parameters representing the DNN are fine-tuned through
embedded backpropagation based on those differences. The goal of
this parameter optimization is to reduce the difference between the
DLIR output and the ground truth images

produce 3D reconstructions that ﬂpproxinmte true MBIR im-
ages using a 16 layer residual convolutional neural network
implemented on multiple GPUs using Google Tensorflow. We
present three implementations of DL-MBIR corresponding to
processing the data in 2D, 2.5D and 3D. While the 3D pro-

hown to offer the best fidelity to MBIR reconstruc-
tion, it requires 3D convolutions that increase computation

dkfz.



Noise Reduction: GE's True Fidelity

« Based on adeep CNN

* Trained to restore low-dose CT data to match the properties of high
guality FBP datasets.

« Said to preserve noise texture and NPS

The 20 cm water phantom (GE Healthcare, WI, US) was scanned on Normalized NPS Curves

Revolution CT with two CTDIvol levels: 49mGy and 15.1mGy, and 2.5 mm

thick images were reconstructed using FBP, ASiR-V 100% and DLIR-H

(Fig. 11a). ASIR-V 100% and DLIR-H were selected for the highest potential

visible change in image texture relative to the FBP reference at higher DLIR-H, 4.9 mGy

dose, for a challenging setup to compare the impact of the iterative ASIiR-V 100%, 4.9 mGy
reconstruction and deep-learning technologies on image appearance. The - \ FBP 15.1 mGy
normalized NPS curves (Fig. 11b) showthat images of low-dose DLIR have T ’
the same NPS characteristics as the images of high-dose FBP, whereas
iterative reconstruction produces results that are clearly different.

nNPS (mm?2)

FBP, 15.1 mGy ASIR-V 100%, 4.9 mGy DLIR-H, 4.9 mGy

Spatial Frequency {lp/cm)




True Fidelity

ASIR V 50%

Courtesy of GE Healthcare



Noise Removal: Philips’ Precise Image

 Noise-injected data serve as low dose examples while their original
reconstructions are the labels. A CNN learns how to denoise the low
dose images.

Routine-dose Routine-dose

Smlcety o target image o Acquires data from routine-dose clinical scans.

reconstruction
Generates low-dose scan data from the

routine-dose data by a sophisticated low-dose
simulation technique that accurately models both
Low-dose photon and electronic noise in low-dose scans.

Low-dose
scan data

stimulation ‘
technigue e Reconstructs routine-dose scan data with

a traditional FBP technique.
Pre-processing Sy Trains the CNN to reproduce the image

appearance of the routine-dose FBP images
with low-dose scan data.

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf




iDose? 1.4 mSv Precise Image 0.7 mSv iDose* 51 mSv

iDose* 1.5 mSv Precise Image 0.75 mSv iDose? 5.4 mSv Precise Image 2.6 mSv

Taken from https://lwww.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf



Noise Removal: United Imaging's
Artificial Intelligence Iterative Reconstruction (AlIR)

~

* AlIR'Is an Iiterative reconstruction A, }""}L;;f;;};""""""""'""";L;;;};i;;;';;};;;;; """"""""""""
algorithm whose regularizer is

replaced by a pretrained neural
network

« Alregularization is done in each
iteration step

Liao et al. Fast and low-dose medical imaging generation empowered by hybrid deep-learning
and iterative reconstruction. Cell Reports Medicine (4), July 2023.




CT Vendor-Based DL Denoising Algorithms

Name Vendor Source Labels Comments
: Low dose AIDR3D images | FIRST reconstruction of
AICE Canon S
(by noise injection) normal dose data
N Low dose rawdata/images FBP reconstruction of Pro_b zlollyy Wees (B Ia_yer.
True Fidelity e]= B ; Said to preserve noise
(by noise injection) normal/high dose data
texture.
: . Low dose images FBP reconstruction of
Precise Image Philips S
(by noise injection) normal dose data
- Siemens - -
: Low dose sinograms Iterative reconstruction Neural network
AlIR United S :
(by noise injection?) of normal dose data regularizes IR
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Conclusions

 Most DL reconstruction/restoration algorithms aim at noise
reduction which can then be converted into a dose reduction.

« Substantial improvements in image quality or dose reduction are
clinically seen.




Thank You!

* This presentation will soon be
available at www.dkfz.de/ct.

« Job opportunities through DKFZ’s
International PhD or Postdoctoral
Fellowship programs
(marc.kachelriess@dkfz.de).

« Parts of the reconstruction
software were provided by
RayConStruct® GmbH, Nirnberg,
Germany.

(Cﬁl The 8t International Conference on

Image Formation in X-Ray Computed Tomography

Conference Chair

Marc KachelrieRB, German Cancer Research Center (DKFZ), Heidelberg, Germany
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