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Aim

• Introduce and discuss vendor-specific deep learning image 
reconstruction/restoration algorithms.

• Make aware of potential pitfalls of DL noise reduction algorithms.
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W = 150 HU

Canon PIQE

• Precise IQ Engine (PIQE).

• Trained on data from Canon’s Precision 
high spatial resolution CT

• Converts images from Canon’s standard 
spatial resolution scanners (e.g. Aquilion 
ONE / PRISM edition) to look like high 
spatial resolution images.

Image courtesy of Canon Medical Systems
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Kawai et al. Coronary computed tomography angiographic detection of in-stent restenosis via 
deep learning reconstruction: a feasibility study. Eu. Rad. (34):2647-2657, 2024
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Noise Removal Example 1

• Architecture based on state-of-the-art networks for image classification 
(ResNet).

• 32 conv layers with skip connections

• About 2 million tunable parameters in total

• Input is arbitrarily-size stack of images, with a fixed number of adjacent 
slices in the channel/feature dimension.

Input:
low-dose

CT images

Output:
denoised 

CT images

Full-dose 
reference

MSE
loss function

⊝Noise
subtraction

Skip 
connection

Residual Block

Predicted
noise

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a 
Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Low dose images (1/4 of full dose)

Noise Removal Example 1

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. 
Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example 1

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. 
Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Full dose

Noise Removal Example 1

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. 
Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised full dose

Noise Removal Example 1

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT Images Using a Deep Convolutional Neural Network. 
Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Noise Removal Example 2

Y. Wang et al. Iterative quality enhancement via residual-artifact learning networks for low-dose CT. 
Phys. Med. Biol. 63:215004, 2018.
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Noise Removal: Canon‘s AiCE

• Advanced intelligent Clear-IQ Engine (AiCE)

• Trained to restore low-dose CT data to match the properties of 
FIRST, the model-based IR of Canon.

• FIRST is applied to high-dose CT images to obtain a high fidelity 
training target

K. Boedeker. AiCE Deep Learning Reconstruction: Bringing the Power of Ultra High Resolution CT 
to Routine Imaging. Whitepaper, Canon, 2019.



FBP FC52 (analytical recon) AIDR3De FC52 (image-based iterative)

AiCE Lung (deep learning)FIRST Lung (full iterative)

Courtesy of 
Radboudumc, 

the Netherlands

U = 100 kV
CTDI = 0.6 mGy
DLP = 24.7 mGycm
Deff = 0.35 mSv
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Noise Reduction: GE‘s True Fidelity

• Based on a deep CNN

• Trained to restore low-dose CT data to match either
– FBP images to match the properties of Veo, GE’s model-based IR (arXiV-Paper by GE)

– sinograms to match the properties of FBP (white paper by GE)

• No information in how the training is conducted for the product 
implementation. 
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Noise Reduction: GE‘s True Fidelity

• Based on a deep CNN

• Trained to restore low-dose CT data to match the properties of high 
quality FBP datasets.

• Said to preserve noise texture and NPS 



FBP ASIR V 50% True Fidelity

Courtesy of GE Healthcare
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Noise Removal: Philips’ Precise Image

• Noise-injected data serve as low dose examples while their original 
reconstructions are the labels. A CNN learns how to denoise the low 
dose images.

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf



Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf
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Noise Removal: United Imaging‘s
Artificial Intelligence Iterative Reconstruction (AIIR)

• AIIR is an iterative reconstruction 
algorithm whose regularizer is 
replaced by a pretrained neural 
network 

• AI regularization is done in each 
iteration step

Liao et al. Fast and low-dose medical imaging generation empowered by hybrid deep-learning 
and iterative reconstruction. Cell Reports Medicine (4), July 2023.
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CT Vendor-Based DL Denoising Algorithms

Name Vendor Source Labels Comments

AiCE Canon
Low dose AIDR3D images

(by noise injection)

FIRST reconstruction of 

normal dose data

True Fidelity GE
Low dose rawdata/images

(by noise injection)

FBP reconstruction of 

normal/high dose data

Probably uses BP layer. 

Said to preserve noise 

texture.

Precise Image Philips
Low dose images 

(by noise injection)

FBP reconstruction of 

normal dose data

- Siemens - -

AIIR United
Low dose sinograms

(by noise injection?)

Iterative reconstruction 

of normal dose data

Neural network 

regularizes IR
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Study Topic
Dose 

Reduction
Assessment Reconstruction Vendor

Beregi et al., 2022 low-dose abdomen phantom 79% objective AiCE Canon

Hirai et al., 2022a low-dose multiphase hepatic 52% objective, subjective AiCE Canon

Hirai et al., 2022b low-dose pediatric 80 kV 54% objective, subjective AiCE Canon

Jin et al., 2022 low-dose interstitial lung disease 62% objective, subjective AiCE Canon

Loffroy et al., 2022 low-dose head & neck 43% objective, subjective AiCE Canon

Sun et al., 2022 ultra-low-dose urolithiasis 75% objective, subjective AiCE Canon

Yoshioka et al., 2022 low-dose contrast abdomen 40% objective, subjective AiCE Canon

Awai et al., 2021 low-dose abdominal UHR 30% objective, subjective AiCE Canon

Dillman et al., 2021 pediatric detectability 52% objective, subjective AiCE Canon

Loffroy et al., 2021 cardiac CTA stroke 40% objective, subjective AiCE Canon

Kalra et al., 2020 low-dose lesion detection 83% subjective AiCE Canon

Song et al., 2024 low-dose chest, lung parenchyma 86% objective, subjective AiCe Canon

Othmann et al., 2023 ultra-high-resolution Head and Neck 30% objective, subjective AiCe Canon

Willemink et al., 2023 principles & prospects 71% mixed meta many

Strigari et al., 2023 image quality phantom 96% objective Precise Image Philips

Noel et al., 2024 lung phantom 25%-67% objective Precise Image Philips

Deng et al., 2022 
ultra-low-dose pulmonary nodules 

phantom
72% objective, subjective TrueFidelity GE

Lee et al., 2021 pediatric chest & abdomen 63% objective, subjective TrueFidelity GE

Funama et al., 2024
preoperative transcatheter aortic 

valve implantation
30% objective, subjective TrueFidelity GE

Xi et al., 2024 colorectal cancer 75% objective, subjective AIIR United
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Conclusions

• Most DL reconstruction/restoration algorithms aim at noise 
reduction which can then be converted into a dose reduction.

• Substantial improvements in image quality or dose reduction are 
clinically seen.
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Thank You!
• This presentation will soon be 

available at www.dkfz.de/ct.

• Job opportunities through DKFZ’s 
international PhD or Postdoctoral 
Fellowship programs 
(marc.kachelriess@dkfz.de). 

• Parts of the reconstruction 
software were provided by 
RayConStruct® GmbH, Nürnberg, 
Germany.
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