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A multidimensional atlas of human glioblastoma-like
organoids reveals highly coordinated molecular networks and
effective drugs
Changwen Wang1,2,3,15✉, Meng Sun4,5,15, Chunxuan Shao1, Lisa Schlicker6,7, Yue Zhuo1,8, Yassin Harim 1,8, Tianping Peng4,5,
Weili Tian1, Nadja Stöffler1, Martin Schneider7, Dominic Helm7, Youjun Chu4, Beibei Fu4,5, Xiaoliang Jin9,10, Jan-Philipp Mallm11,
Moritz Mall 12,13,14, Yonghe Wu 4, Almut Schulze6 and Hai-Kun Liu 1,4✉

Recent advances in the genomics of glioblastoma (GBM) led to the introduction of molecular neuropathology but failed to translate
into treatment improvement. This is largely attributed to the genetic and phenotypic heterogeneity of GBM, which are considered
the major obstacle to GBM therapy. Here, we use advanced human GBM-like organoid (LEGO: Laboratory Engineered Glioblastoma-
like Organoid) models and provide an unprecedented comprehensive characterization of LEGO models using single-cell
transcriptome, DNA methylome, metabolome, lipidome, proteome, and phospho-proteome analysis. We discovered that genetic
heterogeneity dictates functional heterogeneity across molecular layers and demonstrates that NF1 mutation drives mesenchymal
signature. Most importantly, we found that glycerol lipid reprogramming is a hallmark of GBM, and several targets and drugs were
discovered along this line. We also provide a genotype-based drug reference map using LEGO-based drug screen. This study
provides new human GBM models and a research path toward effective GBM therapy.
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INTRODUCTION
Oncogenic genetic alteration is a fundamental hallmark of human
cancers and has been utilized to characterize genotype-specific
molecular features, which form the basis for personalized
treatment of cancer patients1,2. Based on these efforts,
genotype-based personalized cancer treatment options are
already available for many human cancers, i.e., breast cancer,
lung cancer, and leukemia1. However, it remains challenging to
expand personalized treatment to most cancer patients3.
GBM is the most malignant type of primary brain cancer and

was one of the first tumor entities selected for The Cancer
Genome Atlas (TCGA) project4,5. With the continuous efforts in
genomic analysis of GBM, it has been suggested that GBM is a
heterogeneous group of diseases of different molecular subtypes
based on RNA expression, DNA methylation, or recently via multi-
omics analysis4,6–8. Single-cell RNA-sequencing (scRNA-seq) ana-
lysis of human GBM identified intratumoral heterogeneity of GBM,
which provides a single-cell molecular description of human GBM;
it was suggested that the GBM cells are of high plasticity, which
may switch among the molecular phenotypes9,10. However, it
must be noted that how tumor genotype contributes to the
molecular phenotype-related plasticity remains unclear, i.e., NF1
mutation in human GBM is associated with a mesenchymal
feature, but this has not been verified in animal models4,5. And it is

much more challenging to perform in-depth single-cell DNA
sequencing. In contrast to the rapid development of molecular
characterization of GBM, the clinical treatment options for human
GBM patients remain to be neurosurgery, plus radiotherapy and
temozolomide(TMZ)-based chemotherapy11. There is a clear gap
between the comprehensive molecular description of GBM and
treatment improvement, which needs to be highly prioritized for
future GBM research.
A genome-based personalized treatment of cancer patients

requires a solid understanding of genotype-specific cancer path-
way dependency and actionable target identification. Model
systems of GBM have been utilized to systematically analyze
and compare differences in cancer cells with different mutation
combinations. Genetically modified mouse models have been
used to determine the function of selected genes and identify the
cell of origin in brain tumors12. However, mouse models often do
not represent the molecular pathology of human tumors13.
Patient-derived xenograft (PDX) models or organoids harbor
patient tumor cells. Still, they are limited by complex genetic
background variations, differences in treatment histories, and,
most importantly, the lack of suitable controls14. Most importantly,
the tumor growth characteristics identified in PDX models were
found to be more dependent on the mouse strain than tumor
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type15, suggesting the PDX model may generate many artificial
readouts irrelevant to primary human tumors.
The recent development of organoid technology coupled with

gene editing by CRISPR/Cas9 allows the rapid generation of
genetic mutations in human-derived tissues to model cancer
progression16. Initial attempts were made using induced plur-
ipotent stem cells (iPSCs)-derived cerebral organoids to generate
glioma-like organoids17,18. This model provides the opportunity to
develop genetically customized GBM models derived from single
iPSC clones. Therefore, a rigorous follow-up analysis can be
performed using this experimental system.
Here we generated a set of iPSC-based human GBM-like

organoid models (LEGO: Laboratory Engineered Glioblastoma-
like Organoid) based on CRISPR/Cas9 engineered loss of tumor
suppressors, which are frequently mutated in human GBM
patients. Comprehensive analysis of LEGOs demonstrates their
great potential in identifying new molecular features in cancer
cells, providing a path toward personalized treatment of human
GBM.

RESULTS
Generation of LEGOs with defined genetic mutations
We used human iPSC-derived organoids to dissect the functional
consequences of genetic heterogeneity in GBM (Fig. 1a). Using
CRISPR/Cas9, we generated a spectrum of mutation combinations
(PT: PTEN-/-; TP53-/-, PTCC: PTEN-/-; TP53-/-; CDKN2A-/-; CDKN2B-/-, PTN:
PTEN-/-; TP53-/-; NF1-/-), which are among the most frequently mutated
tumor suppressors in GBM patients5, in two iPSCs derived from
healthy donor, one cell line expressing GFP. The knockout of
individual genes was confirmed by Western blotting and sequencing
(Supplementary Fig. 1a, b). All iPSCs clones grew well except that the
PTN clone showed signs of differentiation, which was reported
previously and could be controlled by MEK inhibitor PD032590119.
We conducted staining of all iPSCs using pluripotent stem cell
markers such as SOX2 (SRY-box transcription factor 2), Nanog (nanog
homeobox), and OCT3/4 (octamer-binding transcription factor 3/4).
The results from staining confirmed that the pluripotent nature of
these iPSCs were not changed by the knockout of tumor suppressors
(Supplementary Fig. 1c). These iPSCs were then differentiated into
organoids with a previously described cerebral organoid protocol20.
Although starting from the same number of cells, all the LEGOs grew
faster and more extensively than WT organoids (Fig. 1b, c), indicating
the activation of cell proliferation and growth pathways following the
oncogenic mutations. Interestingly, the size of PT organoids was the
biggest among the three mutant groups (Fig. 1c).
The histological analysis showed that the LEGOs exhibited

similar structures compared to the WT organoids, indicated by the
expression of SOX2 and TUJ1 (neuron-specific class III beta-
tubulin) (Fig. 1d). However, all mutant LEGOs show an increased
stem/progenitor population (Fig. 1d). We also performed the
staining using FABP7 (fatty acid binding protein 7), DCX
(doublecortin) and SOX9 (SRY-box transcription factor 9) (Supple-
mentary Fig. 1d). The histological analysis showed that the LEGOs
exhibited more expression of FABP7 and SOX9, less expression of
DCX than WT organoids. H&E staining revealed nuclear atypia in
LEGOs after more than 1 month of culture (Supplementary Fig.
1e), indicating signs of malignant transformation. To investigate
whether the LEGOs are tumorigenic in vivo, we performed
xenograft experiments, as illustrated in Fig. 1e. All LEGOs initiated
fatal brain tumors upon xenograft, while WT xenografts survived
significantly longer than LEGO xenografts without forming lethal
tumors (Fig. 1f, Supplementary Fig. 1f, and Supplementary Table
1). Interestingly, the H&E staining showed survival of grafted cells
(Supplementary Fig. 1g), same as what has been reported
before20,21. On the other hand, the grafted GFP+ LEGO cells
showed infiltrative and angiogenic growth patterns (Fig. 1g and

Supplementary Fig. 1h). Moreover, PTN xenografts exhibited a
more infiltrative growth pattern with tumor cells migrating to the
other hemisphere and being tightly associated with blood vessels
(Fig. 1g), suggesting that loss of NF1 results in a more invasive
phenotype, which is a feature of the mesenchymal molecular
phenotype of human GBM. In addition, all grafts expressed
markers, like astrocyte marker GFAP (glial fibrillary acid protein),
neural stem cell marker Nestin, and cell proliferation marker Ki67
(Supplementary Fig. 1i), the tumors also show signs of necrosis,
which is a hallmark for GBM (Fig. 1f). These results demonstrate
that the LEGOs are GBM-like organoids and are tumorigenic
in vivo.

ScRNA-seq analysis reveals shared and genotype-specific
alterations during early tumor development
One of the advantages of cerebral organoids is that they contain
heterogeneous neural cell populations and maintain differentia-
tion hierarchies20, thus can be used to study cellular heterogeneity
and plasticity. To fully characterize the LEGOs on the single-cell
level and to understand how different genetic mutations affect
cellular heterogeneity, we performed scRNA-seq on 1- and 4-
month-old LEGOs. In total, we obtained results from 70617 cells
for further analysis.
We next performed UMAP (uniform manifold approximation

and projection) analysis to visualize cell differentiation trajectory21.
UMAP of 1-month-old LEGOs show two major lineages (neuron
and astrocyte), which was confirmed by the expression of
immature neuronal marker DCX, astrocytic marker FABP7 and
APOE (apolipoprotein E), and neural stem/progenitor marker SOX2
(Fig. 2a and Supplementary Fig. 2a). The 1-month-old WT
organoids mainly differentiated toward the neuronal lineage,
whereas the PT and PTCC organoids switched to astrocytic
differentiation (Fig. 2a and Supplementary Fig. 2a). The PTN
organoids exhibited limited neuronal differentiation and reduced
astrocytic differentiation (Fig. 2a and Supplementary Fig. 2a),
suggesting a general blockage of neural differentiation. We also
observed increased expression of neural stem/progenitor markers
like SOX2 in all the LEGOs, indicating differentiation blockage
upon loss of tumor suppressors, consistent with staining (Fig. 1d
and Supplementary Fig. 2a). Interestingly, PTCC organoids highly
express WNT regulators in the glial progenitor population,
suggesting the activation of the WNT pathway upon loss of
CDKN2A/2B (Fig. 2b). Surprisingly, the PTN organoids activate
several HOX transcription factors in the stem cell clusters (Fig. 2c).
The HOX genes have been reported to be involved in the
induction of EMT (epithelial-mesenchymal transition) in other
cancers22, and they are not expressed in normal neural cells
(Supplementary Fig. 2b), which highly suggests that PTN
organoids may activate a non-neural transcriptional program to
acquire a more aggressive phenotype.
The scRNA-seq results from 4-month-old organoids demon-

strate that the PT organoids are dominated by two major cell
populations, one shows high expression of stem/progenitor cell
markers like SOX2 and PAX6 (paired box 6), and the other express
the immature neuron marker DCX and the astrocyte marker FABP7
(Fig. 2d), indicating a proneural-like tumor cell feature. PTCC
organoids also maintain a differentiation trajectory towards the
FABP7 astrocytic lineage from the SOX2-positive stem cell cluster
(Fig. 2e). Strikingly, there are two major differentiation lineages in
PTN organoids; one is the neural lineage, as indicated by the
expression of SOX2, PAX6, and DCX (Fig. 2f), while the other
lineage highly expresses collagen genes and can be divided into
two clusters (Fig. 2f). The RNA velocity analysis suggested a
possible differentiation hierarchy between the two clusters
(Fig. 2g), with the stem-cell-like cluster expressing CD44
(Fig. 2h). Moreover, this lineage was positive for mesenchymal
master regulators like STAT3 (signal transducer and activator of
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Fig. 1 Generation and histological characterization of LEGOs with defined genetic mutations. a Schematic illustration of experimental
procedures in this study. b Representative images showing the morphology of organoids at different ages. c Organoid growth curves
normalized to respective average size on day 5. P values of the comparison between different groups of organoids were calculated by Two-
way ANOVA. Data are represented as mean ± SEM for quantifying the 2D area of at least 65 organoids from at least four independent batches
at each time point. d Representative immunofluorescent staining images of 1-month-old organoids stained with SOX2 and TUJ1. White circles
show rosette-like structures. Scale bars, 50 μm. e Schematic diagram illustrating mouse xenograft workflow. f Representative H&E staining
images of brain tumors in mouse xenografts. “n” in the enlarged image marks necrotic areas. Scale bar, 1000 μm for the overview, and 100 μm
for insets (g). Representative immunofluorescent images of the tumor-infiltrating area stained with GFP and CD31. Note a strong association
between GFP (green) and CD31(magenta) -positive cells in the PTN xenografts. Scale bars, 1000 μm for overview images, and 100 μm for
insets. See also Supplementary Fig. 1 and Supplementary Table 1.
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transcription 3), C/EBPB (CCAAT enhancer binding protein beta),
RUNX1 (RUNX family transcription factor 1), and FOSL2 (FOS like 2,
AP-1 transcription factor subunit) (Fig. 2h)23. We also found that
these cells express unique markers like PAX7 (paired box 7) and
CHODL (chondrolectin) (Supplementary Fig. 2c), which can
potentially be used to identify these cells in human cancers.
Next, we conducted further analysis of the single-cell RNA

sequencing data to enable a more comprehensive comparison of
LEGOs and human GBM. To achieve this, we employed two

distinct gene signature sets: the GBM cell state and GBM meta-
modules, both derived from single-cell RNA sequencing data of
human GBM patients9,24,25. The LEGOs contain major tumor cell
populations such as “stem-like”, “proliferating stem-like”, and
“differentiated-like” cells (Supplementary Fig. 2d). Moreover, PT
was dominated by the “stem-like” cell population resembling the
proneural subtype (Supplementary Fig. 2e)24. PTN showed an
increased proportion of “differentiated-like” cells mimicking the
mesenchymal subtype (Supplementary Fig. 2e)24. Moreover, we
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Fig. 2 ScRNA-seq analysis reveals shared and genotype-specific alterations during early GBM development. a UMAP plots show the
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C Wang et al.

4

npj Precision Oncology (2024)    19 Published in partnership with The Hormel Institute, University of Minnesota



calculated the single cell meta module score9 of the mutant
organoids and found that PT and PTCC organoids were dominated
by the neural progenitor-like cells and PTN organoids were
dominated by the mesenchymal-like cells (Fig. 2i). However, we
were unable to locate specific human GBM single-cell RNA
sequencing data that precisely matched the mutations established
in our model, underscoring the complex mutational background
of patient GBM data and the challenge of quantitatively assessing
the phenotypic impact of individual genes and highlighting the
advantage of LEGO models. Furthermore, we conducted a
comparative analysis by aligning the relative meta-module scores9

of our LEGO models with the corresponding scores9 in human
GBM (Fig. 2j). This comparison revealed a substantial overlap,
reinforcing the strong resemblance between our LEGO models
and human GBM, and NF1 mutation drives a mesenchymal-like
lineage during organoid development, and it will be interesting to
trace the origin of these cells in the future.
The LEGO models recapitulated critical features of cellular

heterogeneity discovered in human GBM. The advantage that all
LEGOs were derived from the exact iPSC clone with defined
mutations allows us to further analyze how genetic heterogeneity
contributes to cellular heterogeneity, which was not possible
based on previous models. We first used t-SNE (t-distributed
stochastic neighbor embedding) analysis for cell cluster analysis of
all LEGOs together. To distinct different cell types in our organoids,
we enriched our organoid cell type data by incorporating cluster
signatures derived from cerebral organoids that were cultivated
using the same culturing method26. Our analysis unveiled the
presence of distinct cell types within our organoids, which include
neurons, radial glia cells, and stem cells (Fig. 2k). It is evident that
these different cell types are well-separated, particularly as the
organoids reach 4 months of age (Fig. 2k). What’s particularly
intriguing is that although cells from different genotypes exhibit
the same cell type signatures, for instance, mesenchymal-like cells
(cluster 3, 8, 15, 16, 17), these cells from different genotypes
cluster separately (cluster 3, 8 from PTN, cluster 15, 17 from WT)
(Fig. 2k and Supplementary Fig. 2f). This phenomenon is also
observable in other cell types such as neurons and radial glia cells
(Fig. 2k and Supplementary Fig. 2f).
In conclusion, using Single-cell RNA sequencing (ScRNA-seq),

we observed that LEGO models accurately replicate essential
aspects of cellular diversity found in human GBM, and that genetic
mutations strongly influence cell phenotypes. Nevertheless, the
stem cell differentiation hierarchy driven by neurodevelopmental
programs persists throughout tumor formation.

DNA methylome analysis reveals genotype-dependent
progressive changes of DNA methylation during
gliomagenesis
Tumor-cell DNA methylation was recently used for the molecular
classification of brain tumors6. However, how different genetic
mutations affect the DNA methylation pattern in GBM remains
largely unclear. We selected the 1-, 2-, and 3-month-old LEGOs and
WT organoids for DNA methylation analysis using an EPIC (850K)
DNA methylation array. A principal component analysis (PCA)
suggests that the DNA methylome of WT organoids changes
gradually over time, indicating a maturation signature of DNA
methylation along PC2 (Fig. 3a). Interestingly, the 1-month-old PT
and PTCC organoids are similar to the WT organoids (Fig. 3a),
indicating that these mutations do not lead to immediate dramatic
DNA methylome changes. The PTN organoids differ from PT and
PTCC already at 1 month of age (Fig. 3a). Moreover, all LEGOs
showed reduced progression along the maturation axis (PC2)
compared to WT organoids (Fig. 3a). This also indicates a sign of
differentiation blockage, consistent with the scRNA-seq results. On
the other hand, PC1 exhibits a gradual but genotype-specific change
in DNA methylome (Fig. 3a), suggesting oncogenic mutations

induce genotype-specific DNA methylation changes. We then
identified differentially methylated probes (DMP) among all groups
at different developmental stages and found that DMP numbers
were significantly different, with PT organoids showing the lowest
and PTN organoids exhibiting the highest (Fig. 3b). Interestingly, the
methylation level of the mesenchymal subtype was also shown to
be the highest among all three GB subtypes (Supplementary Fig.
3a)26. The dynamic changes of DNA methylation in the LEGOs over
time demonstrate that the DNA methylome is actively changing
during tumor progression (Fig. 3b), including both hypomethylated
and hypermethylated probes, particularly during the early develop-
mental stage of brain tumors (Fig. 3c). However, it remains unclear
what regulates these dynamic DNA methylome changes during
tumor development. We performed a gene set enrichment analysis
(GSEA) on the DMPs located on different gene features at various
stages. There were no enriched hallmark gene sets in PT, probably
due to the low number of DMPs. For the probes located 0-200 bp
upstream of the transcription starting site in 3-month-old PTCC
organoids, we identified the enrichment of several hallmark gene
sets, such as angiogenesis and interferon alpha response (Fig. 3d).
The most apparent difference was observed in the PTN group with
strong activation of EMT and inflammatory signatures in different
gene feature locations at 3 months and in the 5’UTR at 2 months
(Fig. 3d, e and Supplementary Fig. 3b), in line with its infiltrative
growth pattern in vivo.
MGMT (O6-methylguanine-DNA methyltransferase) promoter

methylation is associated with better TMZ response in GBM
patients27. Interestingly, we observed an increased level of MGMT
promoter methylation in PTCC organoids compared to PT and PTN
organoids (Fig. 3f), which indicates that PTCC organoids may
respond better to TMZ treatment than PT and PTN organoids.
Moreover, unsupervised cluster analysis demonstrates that
different LEGOs can be categorized by human GBM DNA
methylation classification probes26 (Fig. 3g), indicating a human
GBM-like methylation pattern in the LEGO model.
It has been suggested that DNA methylation signatures can be

used to determine the cell of origin in human cancers28. Our
analysis demonstrated that the DNA methylome is dynamic
during tumor development and is dependent on the mutation
spectrum. Therefore, it is crucial to use stable and mutation-
independent DNA methylation patterns as tracers for cancer cell
origin. We generated a probe set (Supplementary Table 2) that
shows no significant changes among all different groups of
organoids. Gene ontology (GO) analysis indicates that these
probes are highly enriched for tissue development and differ-
entiation (Supplementary Fig. 3c). This probe set can be further
explored as candidates to trace brain tumor origins.
In addition, we also compared the DNA methylome of the iPSC

to the 2-month-old organoids in an additional iPSC cell line, and
we found that the iPSCs obtained a distinct methylome than the
organoids (Supplementary Fig. 3d), which could be attributed to
the significance of DNA methylation in the process of cell
differentiation. It is also interesting to note that iPSCs from the
same genotype do not cluster closely as the LEGOs, suggesting
the difference we observed is tumor organoid specific. In this cell
line, we also found that the methylation profiles of the WT are
distinct from the LEGOs and the PT and PTCC exhibited similarity
(Supplementary Fig. 3e).
In conclusion, our results showed that the DNA methylation is

largely influenced by the genetic mutations along tumor progression.

Metabolic reprogramming and metabolic heterogeneity
during brain tumor development
One of the hallmarks of cancer cells is the dysregulation of
metabolism29. However, it remains unclear how genetic hetero-
geneity affects the metabolic status of cancer cells. Therefore, we
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analyzed the intra- and extracellular metabolome of 1- and 4-
month-old LEGOs and WT organoids (Fig. 4a).
The metabolome of 1-month-old organoids is largely similar to

each other (Fig. 4b and Supplementary Fig. 4a, c). However,
enrichment analysis of group-specific changes compared to WT
organoids suggests the activation of phospholipid synthesis and
glycerol phosphate shuttle in LEGOs (Fig. 4c), indicated by the
increase of DHAP (dihydroxyacetone phosphate), G3P (glycerol-3-

phosphate) and CDP-choline (Fig. 4d and Supplementary Fig. 4a).
This is consistent with our previous finding that GPD1 (glycerol-3-
phosphate dehydrogenase 1), which converts DHAP into G3P, is
specifically expressed in brain tumor stem cells but not in neural
stem cells30.
The 4-month-old organoids’ metabolome showed a clear

difference between LEGOs and WT organoids (Fig. 4b). PT was
similar to PTCC, while PTN was very distinct from the other LEGOs
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(Fig. 4b). Heatmap analysis of intracellular metabolites demon-
strates activation of the glycolysis pathway in LEGOs, indicated by
low levels of glucose and glutamine and high levels of lactic acid,
further confirmed by the medium metabolite data (Supplemen-
tary Fig. 4b, d, e). The TCA (tricarboxylic acid) cycle metabolites
(citric acid, aconitic acid, α-ketoglutarate, succinate, fumarate,

malate, ATP, NAD) were decreased in LEGOs compared to the WT
organoids (Fig. 4e and Supplementary Fig. 4b, f), suggesting a shift
toward glycolysis from oxidative phosphorylation, reminiscent of
the Warburg effect.
Metabolites are essential substrates of many epigenetic

enzymes31. We analyzed metabolite changes that may explain
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the DNA methylome changes in the LEGOs. Serine contributes to
methylation via the major methyl group donor
S-adenosylmethionine32. In 1-month-old organoids, the level of
serine in the culture medium was reduced in all LEGOs compared
to WT organoids (Fig. 4f and Supplementary Fig. 4a, c), and the
intracellular level of serine was most significantly decreased in
the PTN organoids (Fig. 4f). In contrast, in 4-month-old LEGOs, the
utilization of serine was increased in PTCC and PTN, while
decreased in PT (Fig. 4f and Supplementary Fig. 4b, d). This
strongly suggests that serine is consumed by all LEGOs and even
more by the PTN organoids, which is in line with the observed
high levels of hypermethylation in 1- and 3-month-old PTCC and
PTN organoids (Fig. 3c). Oxoglutaric acid (α-ketoglutarate, α-KG) is
the substrate of many α-KG-dependent dioxygenases, including
the DNA demethylation enzymes TET1/2/3 and 2-hydoxyglutaric
acid (2-HG) antagonizes the function of α-KG31. The level of 2-HG
increased in 1-month-old PTN extra- and intracellularly, and
accumulated in 4-month-old PTCC and PTN organoids as well as in
all LEGO culture media, particularly in the PTN group (Fig. 4g). In
contrast, the level of α-KG was depleted in all 4-month-old LEGOs
compared to the WT organoids (Fig. 4e). This further explains the
dynamic DNA methylation changes in LEGOs and supports the
hypermethylation pattern of PTN organoids.
Consistent with the results from 1-month-old organoids, G3P

and CDP-choline levels are higher in LEGOs at 4 months of age
(Fig. 4h), suggesting the mutant organoids depend on this lipid
metabolism pathway. Regarding genotype-specific changes, we
found that PTN organoids uniquely upregulate the tryptophan
metabolism pathway by consuming and utilizing more tryptophan
and producing more kynurenine (Fig. 4i). Kynurenine could be
catabolized into NAD to facilitate energy production, cellular
proliferation, and immune suppression33,34. PTN organoids also
have high levels of proline and hydroxyproline in the organoids
and culture medium (Fig. 4j). Proline and hydroxyproline are the
major amino acid components of collagen proteins35. Collagen
serves as the scaffold to facilitate glioma cell migration, increase
the stiffness of the tumor, and induce an immune suppressive
microenvironment36,37, and elevated levels of hydroxyproline
could be indicative of high collagen turnover. In PTCC organoids,
we observed the accumulation of branched-chain amino acids
(valine, isoleucine, and leucine) in both the organoids and the
medium (Fig. 4k), indicating an abnormal branched-chain amino
acid metabolism. Enrichment analysis suggests that the Warburg
effect is enriched in all LEGOs, with PTCC particularly showing
enrichment of phospholipid biosynthesis, whereas tryptophan
metabolism is among the most enriched pathways in PTN
organoids (Fig. 4l).
The results above demonstrate distinct metabolic reprogram-

ming events during tumor development (Fig. 4m), and it is evident
that genetic mutations determine the metabolic differences in
cancer cells. In addition, some metabolic changes may regulate
the DNA methylome changes.

Lipidomics assay uncovers glycerol lipid metabolism being a
hallmark of GBM
The metabolomic analysis identified that the metabolites (DHAP,
G3P, CDP-choline) in phospholipid biosynthesis are strongly
associated with GBM development. We therefore performed
lipidomic analysis using the same experimental setup shown in
Fig. 4a. The PCA analysis of 1-month-old organoids shows that the
lipidomes of LEGOs are different from WT organoids (Fig. 5a). This
was unlike the metabolome and methylome results, suggesting
that lipidome reprogramming is the pioneering event upon the
loss of tumor suppressors. The heatmap of lipid species indicates
both DG (diacylglycerols) and TG (triacylglycerols) upregulation in
all mutant groups (Fig. 5b), which further illustrates the
consequence of increased DHAP and G3P. This was further
confirmed by enrichment analysis showing that TGs are the most
significantly enriched lipid species in all LEGOs (Fig. 5c). In
addition, a decrease in ether-linked phosphatidylethanolamine (O-
PE) was observed in the PTCC organoids (Fig. 5b, c).
We next analyzed the lipidome of 4-month-old organoids. PCA

was similar to the 4-month-old metabolome PCA, with the leading
principal component (PC1) separating the LEGOs from WT and the
second principal component (PC2) distinguishing PTN from PT
and PTCC (Fig. 5d). DGs, TGs, and phosphatidylcholine (PC) were
significantly increased in all mutant organoids, particularly in PTN
(Fig. 5e, f). This, together with the increase of G3P, DHAP, and CDP-
choline, as described above, highlights the importance of TG and
choline metabolism in GBM (Fig. 5g). On the other hand, the
structural phospholipids (such as PG, PI, PS, PE, and O-PE) are
decreased in mutant organoids (Supplementary Fig. 5a). It is likely
that the increased production of DG, TG, and PC in LEGOs leads to
decreased structural phospholipids as these lipids are derived
from the same precursor, G3P. Ceramide production could be
activated under stress conditions by hydrolyzing sphingomyelin
(SM)38. Consistently, we observed a higher amount of SM in WT,
and abundant ceramides and CDP-choline in all LEGO groups
(Figs. 5e–g and 4h), suggesting augmented activation of SM
hydrolysis. PTN exhibited significantly higher ceramide expression
than all other groups (Fig. 5e), implying a unique mechanism
enhancing ceramide synthesis upon loss of NF1. It was shown that
the tryptophan metabolite kynurenine can directly bind and
activate the aryl hydrocarbon receptor (AHR)34,39, and the
activation of AHR elevates the synthesis of ceramides40,41.
Altogether, the lipidome analysis identified that lipid reprogram-
ming is a pioneering event during gliomagenesis, and glycerol
lipid metabolism is a hallmark of GBM (Fig. 5g).

Proteomic/phospho-proteomic analysis identifies actionable
targets and pathways for the genotype-based treatment of
GBM
To search for possible genotype-specific drug targets using the
LEGO models, we next performed proteomic and phospho-
proteomic analyses on 4-month-old organoids. Proteome and
phospho-proteome PCA plots exhibit high similarity to the

Fig. 4 Metabolic reprogramming and metabolic heterogeneity during brain tumor development. a Schematic illustration of sample
collection and extraction for metabolomic and lipidomic analysis. b PCA of 1- and 4-month-old organoid metabolome. c Dot plot shows the
top five enriched pathways from the quantitative enrichment analysis of 1-month-old LEGOs compared to WT organoids. d The relative
abundance of lipid metabolism-related metabolites in 1-month-old organoids. e The relative abundance of α-ketoglutarate in 4-month-old
organoids. f The relative abundance of L-serine in 1- and 4-month-old organoids and culture medium. g The relative abundance of
2-hydroxyglutaric acid in 1- and 4-month-old organoids and culture medium. h The relative abundance of lipid metabolism-related
metabolites in 4-month-old organoids. i The relative abundance of tryptophan (upper panel) in 4-month-old organoids and culture medium
and of the tryptophan metabolite kynurenine (lower panel) in 4-month-old organoids. j The relative abundance of the major amino acids
constituting collagen in 4-month-old organoids and culture medium. k The relative abundance of branched-chain amino acids in 4-month-old
organoids and culture medium. l Top five enriched pathways from the quantitative enrichment analysis of the metabolites from 4-month-old
LEGOs compared to WT organoids. m Diagram demonstrating the metabolic changes in LEGOs. GA3P glyceraldehyde-3-phosphate, 3PG
3-phosphoglyceric acid, PEP phosphoenolpyruvic acid. In d–k, the color of the dots indicates the sample group, data are represented as
mean ± SEM; N= 4 for 4-month-old PT and PTN organoid samples, and N= 5 for the rest of the groups; P values were calculated with Student’s
t tests comparing LEGOs to WT; ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, and ns, non-significant. See also Supplementary Fig. 4.
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metabolome and lipidome, with a distinct difference between
LEGOs and WT organoids, and PTN shows a more distinct
proteome/phospho-proteome profile compared to PT and PTCC
(Fig. 6a). However, phospho-proteome provided a better separa-
tion between PT and PTCC (Fig. 6a). GSEA analysis of differentially
expressed proteins identifies processes involved in LEGO devel-
opment (Supplementary Table 3). In particular, the cholesterol and
lipid pathways are enriched in all LEGOs (Fig. 6b–d), consistent
with the metabolomic and lipidomic data. The G2M checkpoint

and related stress and mitosis pathways are enriched in PTCC
(Fig. 6c), indicating elevated mitosis as a result of CDKN2A/2B
deletion. PTN organoids are enriched for negative regulation of
immune response and SASP (senescence-associated secretory
phenotypes) (Fig. 6d and Supplementary Fig. 6a). Additionally,
signatures associated with DNA methylation, extracellular matrix
disassembly, as well as several collagen proteins are highly
enriched in PTN (Fig. 6d and Supplementary Fig. 6b). This is
concordant with the observed DNA methylome changes, the in
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vivo infiltrative phenotype of PTN tumors, and the proline/
hydroxyproline enrichment in PTN metabolome, respectively.
RNA expression has been used for the molecular classification of

GBM, but little is known about whether using protein expression
as the classifier will yield similar results. We analyzed our
proteome data using established tumor-cell-specific RNA signa-
tures42 and found that mesenchymal signatures are highly
enriched in the PTN organoids (Fig. 6e and Supplementary Fig.
6c). This result, together with the other omics analyses, firmly
confirms that the PTN organoid resembles the mesenchymal
subtype of GBM. Furthermore, we found that the expression of
MGMT protein is high in the PTN group, and expression of IDH1 is
increased in PT and PTCC compared to WT, concordant with the
methylation changes (Supplementary Fig. 6d).
To identify possible actionable targets in different subgroups of

LEGOs, we utilized a drug-gene interaction database43 to identify
druggable targets for LEGOs (Supplementary Table 4). Collectively,
enzymes involved in lipid metabolism enzymes, such as MGLL
(monoglyceride lipase), and FDFT1 (farnesyl-diphosphate farnesyl-
transferase 1), could be potential targets for all LEGOs (Supple-
mentary Fig. 6e); this is in line with the activation of lipid
metabolism in LEGOs. DNMT3A (DNA methyltransferase 3A),
SPTLC2 (serine palmitoyltransferase 2), and cholinesterase (BCHE)
could be interesting targets for PTN (Supplementary Fig. 6e).
The phospho-proteomic data allow the prediction of possible

kinases involved in tumor progression. We used a kinase-target
interaction database44 and Kinase Enrichment Analysis45 to
identify the upstream kinases of the phosphorylated sites
(Supplementary Table 5). PT organoids showed activation of
AKT1 and mTOR, due to the mutation of PTEN (Fig. 6f).
Surprisingly, the PTCC organoid phospho-proteomic data did
not show enrichment of CDK4/6, which are classic substrate
kinases of CDKN2A/2B. Instead, CDK1/2/7 were activated in
addition to mTOR and AKT1 (Fig. 6g). In addition to AKT1 and
mTOR, MAPK1, MAPK3 and CDK7 were upregulated due to NF1
mutation in PTN organoids (Fig. 6h). Using luciferase as a readout
for tumor cells in the LEGO model, we found that PTCC LEGO is
more sensitive than the other two to TMZ (Fig. 6j), in line with a
higher MGMT promoter methylation status. the mTOR inhibitors
were effective in all LEGOs (Fig. 6i, j, Supplementary Fig. 6f, 6g),
consistent with the kinase enrichment analysis and the previous
published results that PI3K mutant GBOs are sensitive to
Everolimus treatment46. In contrast, CDK4/6 inhibitors exhibited
no growth inhibition in all LEGOs (Fig. 6j), again concordant with
the kinase enrichment analysis, which indicated that CDK4/6 were
either not enriched or only showed low enrichment compared to
other CDKs. On the other hand, MEK1/2 inhibitors were effective in
all groups but most effective in PTN organoids, likely because of
the enhanced activation of MAPKs (Fig. 6j). The sensitivity of
MEK1/2 inhibitor in PTN organoids was consistent with that have
been published in NF1mutant GBOs46. Combination therapy using
mTOR and MEK inhibitors shows the most effective inhibition of
PT and PTN growth, while CDK4/6 inhibitors compromise mTOR
inhibitor effects in PTCC organoids (Supplementary Fig. 6 h),
suggesting that CDK4/6 inhibitors should be carefully examined
before being considered for treating GBM patients with CDKN2A/
2B mutations. Moreover, we treated the LEGOs with the CDK
inhibitor Zotiraciclib targeting CDK1/2, which was highly activated
in all the mutant organoids, and observed that all LEGOs were
highly sensitive to Zotiraciclib treatment (Fig. 6j), suggesting that
CDK1/2 are valuable therapeutic targets in GBM.
To sum up, the proteomics analysis demonstrated significant

consistency with other omics analyses, and the proof-of-principle
drug test indicated that LEGOs are promising tools for assessing
drug efficacy.

LEGO-based drug screening identifies new drug candidates
for GBM therapy
With the goal of generating a genotype-based drug reference
map and possibly identifying new treatment strategies for GBM,
we performed a drug screen on 327 drugs containing FDA-
approved drugs that could penetrate through the blood-brain
barrier (Fig. 7a and Supplementary Table 6). All LEGO cells were
engineered to express luciferase, and the bioluminescence signal
was used as a readout of cell numbers in the LEGOs. To select
effective drugs, among the drugs that resulted in significant
inhibition of bioluminescence signal (P < 0.05), we only selected
drugs that resulted in 50% inhibition of bioluminescence signal as
positive candidates. With this screen, we identified 42 drugs with
therapeutic effects; seven acted on all three genotypes, and the
rest only worked on specific genotypes (Fig. 7b, c and
Supplementary Fig. 7a). We found that EGFR inhibitors Dacomi-
tinib and Osimertinib inhibit LEGO growth in all genotypes, with a
particularly strong effect on the PTN organoid (Fig. 7c, d and
Supplementary Fig. 7a), suggesting a strategy of patient enroll-
ment for clinical trials for testing EGFR inhibitors. The Syk (spleen
tyrosine kinase) inhibitor Fostamatinib inhibits all LEGOs, suggest-
ing that Syk signaling is essential for GBM progression (Fig. 7c).
Interestingly, we also found that the schizophrenia drug
Aripiprazole also inhibits tumor growth in all LEGOs (Fig. 7c, e),
which implies an alteration of dopamine signaling in GBM. Then,
we performed IC50 tests on three specific drugs — Aripiprazole,
Osimertinib, and Lomitapide. The results of these tests demon-
strated that the IC50 values for LEGOs (Supplementary Fig. 7b)
were in line with the findings from the initial drug screen
conducted at the 10 µM concentration. Subsequently, we applied
the maximum IC50 values obtained from LEGOs to treat WT
organoids (Supplementary Fig. 7c). Our findings demonstrated
that these drugs exhibited specific efficacy on LEGOs while having
no discernible impact on WT organoids.
Since our multi-omics analysis showed that lipid metabolism

plays an important role in tumor progression, we focused further
on the analysis of Lomitapide, an inhibitor of microsomal
triglyceride-transfer protein (MTTP), which could inhibit tumor
growth in all LEGOs (Fig. 7c, f). MTTP is a lipid transfer protein and
is essential for the regulation of lipid metabolism. This is in line
with our discovery that glycerol lipid metabolism is a hallmark of
GBM metabolism. In the Lomitapide-treated LEGOs, we found a
striking reduction in the number of proliferating cells and stem
cells (Fig. 7g, h). We then conducted additional experiments to
assess the impact of Lomitipade in vivo. We initiated a xenograft
model by injecting Pten/Trp53 KO mouse BTSCs47 into the brains
of C57/BL6N mice. Once tumors were established, they were
randomly assigned to two groups and treated with either DMSO
or Lomitapide. The survival analysis revealed a significant
extension of overall survival in the group treated with the
Lomitapide (Fig. 7i and Supplementary Table 7). Furthermore, the
staining demonstrated the elimination of not only proliferating
cells but also a significant proportion of stem cells (Fig. 7j),
aligning with the results observed in LEGOs.
Expression of Mttp has highly enriched in our previous

ribosome RNA-sequencing analysis by comparing mouse neural
stem cells (NSCs) and brain tumor stem cells (BTSCs), its
expression is also highly enriched in tumor-bearing mice after
TMZ treatment (Supplementary Fig. 7d)30. High expression of
MTTP also shows a worse prognosis in GBM patient (Fig. 7k)48, and
single-cell analysis in published data sets9 suggest MTTP is more
expressed in stem cell or mesenchymal subtype of tumor cells
(Supplementary Fig. 7e), which is consistent with our previous
observation of activation of glycerol metabolism in BTSCs30.
To further confirm that Lomitapide exerts its effects through

MTTP, we performed Mttp knockout in the Pten/Trp53 KO mouse
BTSCs (Supplementary Fig. 7f). The results indicated that Mttp
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knockout cells exhibited slower growth compared to WT cells
(Fig. 7l). Furthermore, they displayed increased resistance to
Lomitapide treatment (Fig. 7m) and were less likely to form tumor
spheres due to the elimination of stem cells (Fig. 7n). Based on
these compelling results, we believe that Lomitapide warrants
further investigation as a potential treatment for GBM.

Additionally, to rule out the possibility that the drug screen
results are specific to the GFP+ iPSC, we performed bulk RNA
sequencing on 2-month-old organoids derived from two iPSC
lines. The analysis revealed significant differences between the WT
and knockout organoids, with a clear separation of PTN clearly
distinguishing itself from PT and PTCC (Supplementary Fig. 7g). In
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addition, our GSEA enrichment analysis unveiled enriched path-
ways related to lipid metabolism in PT, PTCC, and PTN when
compared to WT. Furthermore, PTN displayed significant enrich-
ment in pathways associated with “Negative regulation of
immune response” and “extracellular matrix disassembly” (Sup-
plementary Fig. 7h). Further, as a proof of concept, we conducted
a drug screening test using LEGOs derived from the additional
iPSC cell line. Our findings mirrored those observed in the original
cell line, with mTOR inhibitors demonstrating consistent efficacy
across all three genotypes, CDK4/6 inhibitors exhibiting no
discernible effect, and CDK1/2 inhibitors showing notable effec-
tiveness (Supplementary Fig. 7i). Particularly, MEK1/2 inhibitors
emerged as the most efficient in PTN organoids. Moreover, the
drug identified through multi-omics analysis and prior drug
screening, Lomitapide, exhibited favorable results in LEGOs
derived from the new cell line (Supplementary Fig. 7i).
Complete information on treated drugs and outcomes can be

found in Supplementary Table 6. Noteworthily, some drugs that
exhibited therapeutic effects on one genotype may promote the
growth of another, which further highlights the importance of
genetic background in directing treatment options. This
genotype-based drug reference provides a basis for the persona-
lized treatment of GBM patients.

DISCUSSION
Our temporal multi-omics analysis (scRNA-seq, DNA methylome,
Metabolome/Lipidome, and Proteome/Phospho-proteome) covers
essential molecular layers of the cancer cell molecular network.
This allows us to discover genotype-specific molecular changes
during tumor development. In Supplementary Table 8, we
summarized all major molecular milestones during GBM develop-
ment and divided them into shared and genotype-specific
milestones. We also list milestones that can be validated by
analysis of different molecular layers. i.e., early changes during
GBM development include the increase of stem cell frequency and
attenuation of neural differentiation. This is accompanied by
metabolite changes, which can also influence epigenetic mod-
ifications like DNA methylation. Coherently, active DNA methyla-
tion changes during early tumor development shown by
methylation array data, elevated DNA methylation pathway
activity, and low IDH1 expression presented by proteomics data
support hypermethylation in PTN, which could be further
confirmed by the decrease of a-KG and increase of 2-HG in the
metabolomic assay. The increase of phospholipid metabolism is
an early event, and this change persists with brain tumor
development. Notable genotype-specific features include a WNT
activation in PTCC organoids, ectopic expression of the HOX gene
cluster, and mesenchymal signature in PTN organoids. The MGMT
promoter is methylated in PTCC organoids, and we show that
PTCC organoids are sensitive to TMZ. It is also important to note
that the LEGOs are primarily similar to the WT organoids at the 1-
month-old, highlighting that most of the oncogenic changes

occurred during tumor organoid development, not at the
iPSC stage.
One fundamental question in cancer biology is which features

of cancer cells are determined by genetic and non-genetic
heterogeneity, respectively. This could not be investigated so far
due to the lack of proper models. The genetically defined LEGOs
are initially derived from the exact iPSC clone providing an ideal
tool to assess the contribution of genetic heterogeneity to
intratumoral heterogeneity quantitatively. In our analysis,
CDKN2A/2B mutation in PTEN and TP53 deletion background
further push the development of PT organoids in a similar
direction, suggesting these mutations work together and drive
similar cancer phenotypes. However, the NF1 mutation dramati-
cally reprograms the cancer cell phenotypes across all molecular
layers, which will be discussed below. Therefore, the LEGO model
can serve as genetic building blocks of the cancer genome, which
can be further expanded and used to analyze the interaction
between cancer genetic and non-genetic heterogeneity. Combin-
ing LEGOs to generate fully customized genetically heterogenous
organoids is also straightforward. The scRNA results also demon-
strated that genetic mutations have mutation-specific influences
on cell phenotypes. Although the stem cell differentiation
hierarchy is largely maintained in all LEGOS. The cellular
composition and molecular phenotype of the lineages in different
LEGOs are different from each other. This is critical information for
future interpretation of scRNA-seq results of human GBM patient
tissues; the contribution to cellular heterogeneity from genetic
and non-genetic factors must be clearly demonstrated. Therefore,
obtaining mutation information and considering the genetic
heterogeneity within different cell clusters is essential before
claiming they may represent different cell states9.
Another striking observation in our multi-omics analysis is the

activation of phospholipid metabolism throughout LEGO devel-
opment. Interestingly, this activation is already noticeable in 1-
month-old LEGOs, supported by increased DHAP and G3P. DHAP
is the intermediate metabolite of glycolysis and can be converted
by GPD1 into G3P, the primary precursor for lipid metabolism. We
have shown before that GPD1 is induced explicitly in brain tumor
stem cells during brain tumor development and blocking GPD1
alters tumor lipid metabolism and prolongs the survival of brain
tumor-bearing animals30. The increase of DHAP, G3P, and CDP-
choline in the metabolomic analysis and the increase of DG, TG,
and PC in the lipidomic analysis in LEGOs demonstrate that lipid
metabolism, particularly the glycerophospholipid metabolism, is
activated during brain tumor development. This is in line with the
clinical observation that the glycerol level in GBM patients is much
higher in tumors compared to normal tissue in the tumor
periphery49. It was also reported that brain metastasis also
upregulates lipid metabolism50,51, indicating an adaptation of
cancer cells to the lipid-deprived brain environment50,52. For this
purpose, brain tumor cells upregulate GPD1 to switch the
metabolic flow to lipid metabolism by making use of the glycolysis
metabolite DHAP, which was also reported to be the only sensor
metabolite of the mTOR pathway in glycolysis53. More importantly,

Fig. 7 LEGO organoids respond to drugs that target mutation-specific mechanisms. a Illustration of BLI-based drug screen. b Venn
diagrams demonstrating effective drug distribution in different LEGOs. c Treatment outcome for drugs effective in all LEGOs. N= 3 for each
group. Cell viability tracing with BLI signal in LEGOs treated with Dacomitinib and Osimertinib (d), Aripiprazole (e), and Lomitapide (f).
g Representative Ki67 and Nestin staining on LEGOs treated with DMSO or Lomitapide. Scale bar, 50 μm. h Quantification of Ki67+ and Nestin
+ cells treated with Lomitapide, N= 9 sections for each group. i Overall survival of tumor-bearing mice treated with DMSO or Lomitapide. P
value was calculated with Log rank test. j Representative staining images of tumor areas in mice treated with DMSO or Lomitapide.
Quantification of Ki67-positive and SOX2-positive cells is provided on the right. N= 6 section for each group. Scale bar: 100 µm. k MTTP
expression on GBM patient survival from an external data set48, P value was calculated with Log rank test. l Relative growth of Mttp WT or KO
Pten/Trp53 KO mouse BTSCs after 48 h of culture. m Relative growth of Mttp WT or KO Pten/Trp53 KO mouse BTSCs after 48 hours of treatment
with 500 nM or 1000 nM Lomitapide. n Limiting dilution assay for Mttp WT or KO Pten/Trp53 KO mouse BTSCs. In c–f, P values were calculated
with paired Student’s t-tests comparing signals measured after treatments to before treatments; ****P < 0.0001, ***P < 0.001, **P < 0.01,
*P < 0.05. In d–f, h, j, l, and m, data are represented as mean ± SEM. See also Supplementary Fig. S7, Supplementary Table 6, and Table 7.
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we also discovered that MTTP inhibitor Lomitapide efficiently
blocks LEGO growth, providing another attractive target, and the
drug should be further investigated. Lipid metabolism is likely an
emerging hallmark of brain cancers that should be further
investigated.
Major mutations that drive human GBM have been identified

via genomic sequencing4,5. Interestingly, the major molecular
subtypes of human GBM are defined primarily via RNA expression
or DNA methylation pattern8,42,54, and there is no strong
correlation between genetic mutation and molecular subtypes.
NF1 mutation is highly enriched in the mesenchymal subtype,
whereas TP53, PTEN, and CDKN2A/2B inactivation were not
enriched in particular subtypes4. Inactivation of Nf1 and Trp53
leads to brain tumor formation in a mouse model55. However,
whether NF1 mutation drives mesenchymal GBM remains not
experimentally confirmed. Here we showed that NF1 mutant
organoids have many unique features compared to other LEGOs.
The PTN xenograft shows a rather infiltrative growth pattern and
high angiogenesis, and scRNA-seq identified a mesenchymal cell
cluster with increased expression of collagen genes. PTN also
produces the immunosuppressant kynurenine and has high levels
of proline and hydroxyproline, which support the high collagen
level. Moreover, PTNs are not sensitive to TMZ treatment because
of lacking MGMT methylation and increased expression of MGMT
protein. All these factors fit the mesenchymal features of human
GBM23 and confirm that NF1 mutation drives the mesenchymal
features in human GBM. The significant differences between PTN
tumors and PT/PTCC tumors suggest that the NF1mutant GBM is a
unique subgroup of GBM, which should be studied and treated
differently.
Compared to several previously published GBM organoid

models, LEGO exhibited several advantages. For example, neoCOR
is well-suited for the study of invasion and the interaction
between tumor and normal cells, but it may not fully encompass
the common molecular subtypes of GBM due to its reliance on
typical GBM driver mutations. Additionally, the limited representa-
tion and characterization of tumor cells in this model makes large-
scale omics analyses challenging7. Similarly, the glioblastoma
model using human cerebral organoids8 is valuable for investigat-
ing interactions between tumor and normal cells but may not
provide a comprehensive representation of the diverse molecular
subtypes of GBM.
The LEGOs present a notable advantage in that they originate

from a particular iPSC clone with precisely defined mutations. This
distinctive attribute empowers us to quantitatively investigate
how genetic diversity contributes to phenotypic heterogeneity, a
facet that was challenging to assess in prior models.
The LEGO model analysis demonstrates that genetic mutations

determine major molecular consequences. Therefore, the realiza-
tion of personalized treatment of human GBM requires knowledge
of genotype-specific drug sensitivity information. The LEGO model
comprehensively encompasses the primary GBM subtypes and is
well-suited for establishing links between tumor genotype and
drug response. Our preliminary treatment of LEGOs demonstrates
that different LEGOs respond differently to drug treatments. This
set the foundation for using LEGO-like models to study human
cancer heterogeneity. The results obtained from the LEGOs show
an excellent correlation across different molecular layers, including
drug responses. The MGMT promoter was found to be highly
methylated in PTCC organoids, and the PTCC organoids respond
better to TMZ treatment. In particular, it is unexpected that the
PTCC organoid do not respond to CDK4/6 inhibitors and our
phospho-proteome results suggest CDK4/6 are not activated in
the PTCC organoids. This raises concern about using a CDKN2A/2B
mutation as a selection criterion for CDK4/6 inhibitors. The drug
screen we performed also provided precious information on a
genotype-based drug sensitivity map, which can be used for drug
candidate selections on personalized treatment GBM clinical trials.

It is also important to mention that the LEGO models are based
on iPSCs, which can be easily shared with the research community
for comparison, validation, and improvement. The other models
are limited either with limited patient material access or the
requirement of new tumor induction, which limits the potential for
cross-lab comparison and validation.
The following steps will further expand the LEGO genotypes

and assemble different LEGOs to build fully customized, geneti-
cally heterogenous organoids, that can be used to investigate
clonal evolution, cell competition, clonal interactions, and
combination therapies. Moreover, adding relevant tumor stromal
cells like microglia and T cells in a controlled way will also be
interesting, as it will allow investigations into how genetic
heterogeneity determines immune cell behavior.

METHODS
Genome editing of iPSCs
Human induced pluripotent stem cells (iPSC) with mEGFP inserted
at the safe harbor locus AAVS1 under CAGGS promoter were
purchased from Coriell Institute (New Jersey, USA, Cat#AICS-0036-
006; RRID: CVCL_JM19). Another human iPSC line was provided by
RUCDR Infinite Biologics (RUID: 06C53141). All the iPSCs were
cultured in Matrigel (Corning, New York, USA, Cat#354277) coated
plates, fed with mTeSR Plus medium (Stemcell Technologies,
Vancouver, Canada, Cat#100-0276) every other day at 37 °C
incubators supplied with 5% CO2. The cells were passaged with
ReleSR (Stemcell Technologies, Cat#05872) as small colonies after
reaching 70–80% confluency. 3 μM of CHIR99021 (Tocris
Bioscience, Minneapolis, USA, Cat#4423) and 1 μM of PD0325901
(Selleckchem, Houston, USA, Cat#S1036)19 were added to the
culture medium of PTN iPSCs. The cultures were regularly tested
for mycoplasma contamination.
The gRNAs targeting respective tumor suppressor genes were

inserted into modified pX330 plasmids56 containing the
puromycin-resistant gene. The electroporation was conducted
with Neon™ Transfection System (Thermo Fisher Scientific,
Massachusetts, USA). Briefly, cells were harvested by four minutes
of Accutase (Sigma-Aldrich, Missouri, USA) treatment at 37 °C and
resuspended with R resuspension buffer containing 15 μg gRNA
expression vectors. The electroporation was conducted for two
pulses with 1200 V, 20 ms. The electroporated cells were cultured
in mTeSR Plus medium containing ROCK inhibitor (Stemcell
Technologies, Cat#72304) for 24 hours after the electroporation.
Puromycin (2 μg/mL) was added to the culture medium and
refreshed every 12 hours for two days. The cells were then seeded
at a density of 50 ~ 100 cells per 10 cm dish and expanded for ten
days. The single cell colonies were screened by T7 Endonuclease I
(T7E1, New England Biolabs, Ipswich, USA, Cat#M0302L) assay, and
the Sanger sequencing (Eurofins) results were analyzed with the
TIDE webtool57. The A-tailing PCR products from the candidate
clones were cloned into the pGEM-T vector (Promega, Madison,
USA, Cat#A3600) and sequenced. Then two clones from each
mutation combination were selected and further validated by
western blotting. In brief, the protein lysis from the iPSCs was
electrophoresed and transferred onto 0.2 μm PVDF membranes.
The membranes were blocked with 5% non-fat milk for one hour
at room temperature (RT) and incubated with primary antibodies
overnight at 4 °C with shaking. The next day, the membranes were
incubated with respective horseradish peroxidase (HRP) conju-
gated secondary antibodies for two hours and imaged using
ChemiDoc (Bio-Rad, California, USA) after reacting with HRP
substrate. gRNA sequences (5’ to 3’): PTEN, CAGTTTGTGGTCTGC-
CAGCT, TP53, GCAGTCACAGCACATGACGG, CDKN2A, GATGATGGG-
CAGCGCCCGAG, CDKN2B, CTGGCCAGCGCCGCGGCGCG, NF1,
CCAGGATATATCCAAAGACG. Antibody dilutions: PTEN (Cell Signal-
ing Technology, Massachusetts, USA, Cat#9559 L, RRID:
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AB_390810), 1:1000; P53 (Thermo Fisher, Cat#MA512557,
AB_10989883), 1:1000; P15/P16 (Santa Cruz, Texas, USA, Cat#sc-
377412), 1:50; NF1 (DKFZ, Heidelberg, Germany, Cat#DKFZ-NF1-
146/29/2558), 1:4; GAPDH (Cell Signaling Technology, Cat#2118 L,
Cat#2118 L), 1:2000; β-Tubulin (Cell Signaling Technology,
Cat#2128 s, Cat#2128 s), 1:2000.

Organoid culture
The WT, PT, PTCC, and PTN organoids were generated following
previously described protocols20,59,60 with minor adaptions.
Briefly, on day 0, the iPSCs were dissociated into single cells as
described above and 12,000 cells were seeded each well of 96-
well ultra-low attachment plates (Corning, Cat#7007) containing
the following medium, 80% DMEM/F12 (v/v, Gibco, Montana, USA,
Cat#11330032), 20% KOSR (v/v, Gibco, Cat#10828-028), 3% ES-
qualified fetal bovine serum (v/v, FBS, Gibco, Cat#10270106), 1%
GlutaMAX (v/v, Gibco, Cat#35050038), 1% MEM-NEAA (v/v, Sigma-
Aldrich, Cat#11140050) and 0.7% 2-Mercaptoethanol (v/v) sup-
plied with 50 μM of ROCK inhibitor and 6 ng/mL of bFGF
(Peprotech, New Jersey, USA, Cat#100-18B). The medium was
refreshed on day 3. On day 5, the culture medium was replaced
with DMEM/F12 containing 1% N2 (v/v, Gibco, Cat#17502048), 1%
GlutaMAX (v/v), 1% MEM-NEAA (v/v), and 1 μg/mL heparin (Sigma-
Aldrich, Cat#H3149) and cultured for four days. The Ebs were then
embedded in Matrigel and cultured in the following medium, 50%
DMEM/F12 (v/v), 50% Neurobasal (v/v, Gibco, Cat#21103049), 0.5%
N2 (v/v), 2% B27 without Vitamin A (v/v, Gibco, Cat#12587010),
0.025% insulin (v/v, Sigma-Aldrich, Cat#I9278), 0.35%
2-Mercaptoethanol (v/v,), 1% GlutaMAX (v/v), 0.5% MEM-NEAA
(v/v), and 1% Penicillin/Streptomycin (v/v) for four additional days
in 6-well ultra-low attachment plates (Corning, Cat#3473). There-
after, the organoids were cultured on orbital shakers in culture
medium containing 50% DMEM/F12 (v/v), 50% Neurobasal (v/v),
0.5% N2 (v/v), 2% B27 (v/v, Gibco, Cat#17504044), 0.025% insulin
(v/v), 0.35% 2-Mercaptoethanol (v/v), 1% GlutaMAX (v/v), 0.5%
MEM-NEAA (v/v), 1% Antibiotic-Antimycotic (v/v, Gibco,
Cat#15240096) and 0.4 mM L- Ascorbic Acid (Sigma-Aldrich,
Cat#A4544). The medium was exchanged every two to three days
until sample collection. 3 μM of CHIR99021 and 1 μM of
PD032590119 were added to the PTN culture for the first 5 days.
Widefield images for the organoids were taken by the Cell
Observer (Zeiss, California, USA).

Luciferase labeling of iPSCs
HEK293T cells were cultured with IMDM (Gibco, Cat#31980030)
supplied with 10% FBS (v/v, ATCC, Cat#30-2020) at 37 °C
incubators supplied with 5% CO2 and passaged with Trypsin/
EDTA (Gibco, Cat#15400054). For lentivirus production, 5 ×106

cells were seeded in 10 cm dishes and co-transfected with 2 μg
envelope plasmid pMD2.G, 2 μg packaging plasmid psPAX2, and
4 μg luciferase (Luc2) expressing vector pHHLVX-EF1α-Luc2-puro
the next day. DNA vectors were mixed with OptiMEM (Gibco,
Cat#31985062) to a total volume of 250 μL, and 3x DNA volume
polyethyleneimine (PEI, 1 mg/mL) was diluted in OptiMEM to a
total volume of 250 μL, respectively. The two mixtures were then
combined, thoroughly mixed, and incubated at RT for 15 min
before being dropwise applied to the HEK293T cells. The virus
particles were collected 24 hours and 48 hours after transfection
and concentrated with Lenti-X™ Concentrator (Takara, California,
USA, Cat#631232). The pellets were then resuspended with PBS,
aliquoted, and stored at −80 °C. The iPSCs were infected with the
lentivirus, and positive clones were selected by bioluminescence
imaging (BLI) with IVIS Lumina II In Vivo Imaging system
(PerkinElmer, Waltham, USA). Ten Luc2 positive clones were
pooled to maximize the labeling rate and minimize the colony
effect.

Sample collection and cryosection
The organoids were fixed in 4% PFA for 20 min to 1 hour at 4 °C
and emerged in 30% sucrose (w/v) overnight at 4 °C to dehydrate
the tissue. The next day, the organoids were embedded in Gelatin/
Sucrose solution and froze on dry ice. Gelatin/Sucrose solution
was prepared by dissolving 7.5% gelatin (w/v) in 10% sucrose
(w/v) at 37 °C. The embedded samples were stored in sealed
plastic bags in a −80 °C freezer. Sections were collected and dried
for one hour at RT before storing at −80 °C.

Hematoxylin and Eosin staining
The paraffin sections were deparaffined with the following
procedure: 2 × 5min Xylene, 2 × 5min 100% Ethanol, 2 × 5min
95% Ethanol, and 5min 70% Ethanol. The sections (cryosections or
deparaffined sections) were rehydrated in ddH2O for 5 min,
stained in Hematoxylin for 1.5 min, and rinsed for 5 min under
running tape water. 0.1% Eosin was applied for 1.5 min, washed by
dipping in water, and differentiated in 70% Ethanol for 3 min.
Dehydration was done with the following changing of buffers:
3 min 85% Ethanol, 2 × 5min 100% Ethanol, 2 × 5min Xylene. The
sections were mounted with Eukitt and imaged with Axioscan
(Zeiss) or Tissue FAXS Plus (Tissue Gnostics, California, USA).

Immunofluorescence and immunohistochemistry
For Immunofluorescence (IF) staining, the sections were incubated
with primary antibodies overnight at 4 °C after deparaffinization
(for paraffin sections only), rehydration, antigen retrieval, and
blocking. The sections were then incubated with respective
secondary antibodies conjugated with AlexaFluor (Thermo Fisher
Scientific, AF488, Cat#A11039, RRID: AB_2534096; AF555,
Cat#A31572, RRID: AB_162543; AF555, Cat#A21428, RRID:
AB_2535849; AF647, Cat# A21235, RRID: AB_2535804) or CF®
(633, Sigma-Aldrich, Cat#SAB4600128) dyes and DAPI for two
hours at RT in the dark. The slides were mounted with Prolong
gold (Invitrogen, California, USA, Cat# P36930) and imaged with
Axioscan or Tissue FAXS Plus.
For immunohistochemistry (IHC) staining, the sections were first

deparaffinized, rehydrated, and antigen retrieved. Then they were
treated with 3% H2O2 (v/v) for 10 min to quench the endogenous
peroxidase before blocking and primary antibody incubation. On
the second day, the sections were incubated with HRP-conjugated
secondary antibodies for two hours at RT. Then the sections were
treated with Streptavidin HRP for 10min and visualized by DAB
substrate application (Abcam, Waltham, USA, Cat#ab64238). The
cell nuclei were counterstained with Hematoxylin, then dehy-
drated and mounted as the hematoxylin and eosin (H&E) staining.
For BrdU staining, the sections were treated with 2 N HCl for 5 min
at 37 °C before blocking. The slides were imaged with Axioscan or
Tissue FAXS Plus.
Primary antibody dilutions: Ki67 (Cell Signaling Technology,

Cat#9129, RRID: AB_823664), 1: 400 for IF, 1:1000 for IHC; GFP
(Abcam, Cat#ab13970, RRID: AB_300798), 1: 500 for IF; GFAP (Cell
Signaling Technology, Cat#3670, RRID: AB_561049), 1: 1000 for
IHC; BrdU (BD Biosciences, New Jersey, USA, Cat#347580, RRID:
AB_10015219), 1: 500 for IHC; Nestin (Cell Signaling Technology,
Cat#33475, RRID: AB_10015219), 1: 200 for IF, 1:1000 for IHC; SOX2
(Abcam, Cat#ab97959, RRID: AB_2341193), IF 1: 500, IHC 1:1000;
Tubulin B3 (TUJ1) (Biolegend, California, USA, Cat#801202, RRID:
AB_10063408), IF 1: 1000. FABP7 (BLBP) (Abcam, Cat#32423, RRID:
AB_880078), IF 1:200; SOX9 (Abcam, Cat#ab185966, RRID:
AB_2728660), IF 1:300; Doublecortin (DCX) (Santa cruz, Cat#sc-
291390), IF 1:100.

Cultivation of mouse glioma stem cells
The Pten/Trp53 KO mouse glioma stem cells (BTSC, mGB2) were
described previously47. The cells were cultured in N2 medium
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containing 97% DMEM/F12 (v/v), 1% Pen/Strep (Sigma-Aldrich,
Cat#V900929), 1% GlutaMAX (v/v), 1% N2 (v/v), 20 ng/ml bFGF,
and 20 ng/ml EGF (Invitrogen, Cat#PHG0311). Cells were split
every 3 days.

Animal experiments
Female NOD/SCID and C57BL/6 N mice were purchased from
Shanghai Jihui Laboratory Animal Care Co.,Ltd (Shanghai, China)
and housed in the Animal Facility at the National Facility for
Protein Science in Shanghai. All mouse experiments were
conducted under Shanghai Institutional Animal Care and Use
Committee (IACUC) guidelines and an approved IACUC protocol of
ShanghaiTech University (#20201208001) according to all relevant
ethical regulations for animal testing and research.

Mouse orthotopic xenograft
Single cells dissociated from the 45-day-old organoids induced
from Luc2+ iPSCs (WT, PT, PTCC, PTN) were orthotopically injected
into the right striatum of 4- to 5-week-old female NOD/SCID mice
(WT, N= 11; PT, N= 9; PTCC, N= 10; PTN, N= 9). Briefly, organoids
were cut into small pieces with scalpels and digested with the
Neural dissociation kit (P) (Miltenyi, Bergisch Gladbach, Germany,
Cat#130-092-628) following the manufacturer’s protocol. Pten/
Trp53 KO mouse BTSCs single cells digested with Accutase and
injected into the right striatum of 4- to 5-week-old female C57/
BL6N mice. After the dissociation, for both injections, 5 × 105 cells
were resuspended in 2 μL HBSS (Gibco, Cat# 14170088) and stored
on ice. The mice were anesthetized with 0.15‰ avertin solution
(1.2% avertin solution consists of 25 g of tribromoethanol (Sigma-
Aldrich, Cat#T48402), and 15.5 ml of 2-Methyl-2-butanol (Sigma-
Aldrich, Cat#152463) which dissolved in 0.9% saline), the cells
were injected at the position 2mm to the right lateral bregma and
3mm deep with a flow of 0.2 µL/min utilizing a 10 µL precision
micro syringe (World Precision Instruments, Florida, USA) with a
34-gauge needle. Mice were checked daily for signs of distress,
including continuous weight loss or neurological disorders (such
as hydrocephalus or impaired motor skills), and sacrificed with
CO2 as soon as they showed related symptoms. The brains were
collected for histological analysis.

Single-cell RNA sequencing and data analysis
The single-cell RNA sequencing libraries were generated from 1-
and 4-month-old whole organoid dissociations using Chromium
Single Cell 3′ Kit v3.1 (10x Genomics, California, USA). One-month-
old organoids (three organoids each group) were treated with Cell
Recovery Solution (Corning, Cat#354253) for 20 min at 4 °C to
remove the surrounding Matrigel, and 4-month-old organoids
(three organoids each group) were cut into four pieces and
washed with DPBS (Gioco, Cat# 14190144) for three times to
remove dead cells from the inner core before cell dissociation with
the Neural dissociation kit (P). After the dissociation, the single cell
suspensions were filtered with a 100 μm cell strainer (Gibco)
followed by 70 μm, and 40 μm Flowmi® cell strainers (Fisher
Scientific, Cat#BAH136800070-50EA, Cat# BAH136800040-50EA).
An equal number of cells from three separately digested
organoids for each group were pooled and loaded onto the 10X
Genomics microfluidics chip. The libraries were prepared accord-
ing to the manufacturer’s protocols and sequenced using the
NovaSeq 6000 Paired-End S1 kit (Illumina, California, USA) by the
NGS Core Facility of the German Cancer Research Center (DKFZ).
Raw RNA-seq reads were aligned to human genome hg19

(Ensembl v75) with Cell Ranger (v3.1.0)61 with non-default
parameter “—expect-cells=10000”. Data from WT, PT, PTCC, and
PTN organoids at 1- and 4-month-old were aligned separately.
Raw reads in each condition were analyzed with Seurat (v3.1.5)62.
Briefly, cells with the number of features in the quantile range of

5% and 95% in populations, as well as with less than 10% of reads
aligned to mitochondrial genes, were used for downstream
analysis. We used 75 principal components for dimension
reduction, cluster identification, and low-dimension projections.
To perform RNA velocity analysis, the splicing information of cells
was calculated for each organoid separately with velocyto
(v.0.17.17)63. We generated the 1- and 4-month data by
concatenate results across conditions. Looms were converted to
h5ad files integrating cell annations and UMAP/t-SNE embedding.
RNA velocity was estimated with the stochastic model with
generated h5ad files as input to scvelo (v0.2.2)64. The tumor cell
state was annotated by mapping the cluster gene signature to the
reference cell state signatures25 with Fgsea R package65, the
signature with the smallest P value was chosen as annotation, in
the case when the P values were the same, the enrichment score
and the gene expression was evaluated to determine the cluster
annotation, the cluster remained unmapped if there was no
significantly enrichment cell state. The tumor cell meta-module
score and the annotation with normal cerebral organoid cell types
were performed with the scallop R package9.

DNA methylation array and data analysis
For the GFP+ iPSC cell line derived organoids, we have four
samples each for 3-month-old LEGOs, three samples each for
other groups. For the other iPSC cell line, we have three organoids
from each group of 2-month-old organoids. The organoids were
cut into four pieces and washed with DPBS 3 times to remove the
dead cells. For both iPSC cell line, three samples each containing
around 2 million cells were used for DNA extraction. The DNA from
each genotype was extracted with Dneasy Blood & Tissue Kit
(Qiagen, Hilden, Germany, Cat# 69504) following the manufac-
turer’s protocol. DNA methylation array analyses were then
performed with Infinium Methylation EPIC BeadChip Kit (Illumina)
or Infinium HumanMethylation450 BeadChip kit (Illumina) accord-
ing to the manufacturer’s instructions by the microarray unit of
the DKFZ Genomics and Proteomics Core Facility.
The DNA methylation EPIC array data were processed with the

CHAMP R package66 following the recommended pipeline. A total
of 740031 probes were kept for analysis after filtering and
normalization. The PCA plot was drawn with the Factoextra R
package. Differentially methylated probes (DMP) were identified
for PT vs. WT, PTCC vs. WT, and PTN vs. WT at different time points.
The differential methylation level of over-methylated and under-
methylated probes was calculated by dividing the number of DMP
by the total number of probes. The mean delta beta value of all
the DMPs localized on specific gene features was used to rank the
genes for gene set enrichment analysis (GSEA)67 by the Fgsea R
package65. Methylation clustering was performed based on
previously identified methylation classification probes26. The
MGMT methylation level was calculated by the MGMT-STP27
logistic regression model using the M values of two probes
(cg12434587 and cg12981137)68, and the M values were
calculated by log transformation of the beta values (M =
log2(beta/(1-beta))69. The gene ontology analysis of the stable
probes was performed with the clusterProfiler R package70. The
DNA methylation 450 K array data was analyzed with the CHAMP R
package66, and The PCA plot was drawn with the Factoextra R
package.

Metabolome and lipidome sample processing and data
analysis
Sample collection. We performed metabolome and lipidome
profiling on 1- and 4-month-old organoids (three organoids each
sample, five samples in each group) and corresponding culture
medium (200 µL medium each sample, five samples in each
group). Six organoids were transferred to each 6-well-plate well
containing 3mL culture medium and conditioned for two days at
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37 °C with 5% CO2 on orbital shakers. Blank medium control was
prepared by incubating fresh medium under the same condition
without organoids. Three organoids were quickly washed with
154mM ammonium acetate on ice and collected as one sample,
and 300 μL medium was collected from each well. All the samples
were snap frozen in liquid nitrogen and stored at −80 °C before
extraction.

Organoid extraction (water-soluble metabolites and lipids)
The organoid samples were homogenized with Mixer Mill (Retsch,
Haan, Germany) and ceramic beads at maximum frequency for
two to four minutes in pre-cooled racks after adding ice-cold
methanol/H2O (4:1, v/v, 500 µL per 40 mg tissue) with internal
standards (4 µM lamivudine, 4 µM D4-glutaric acid, 4 µM D8-
phenylalanine, and 16 µl Splash Lipidomix per 40 mg tissue).
500 µL of homogenate was then collected and extracted by
applying 60 µL 0.2 M HCl, 200 µL chloroform, 200 µL chloroform,
and 200 µL H2O consecutively with vortex. The extracts were spun
down at 16000 g for ten minutes, and the upper phase (water-
soluble metabolites) was evaporated for 30min at 35 °C under
nitrogen and dried in SpeedVac (Eppendorf, Hamburg, Germany)
at 15 °C overnight. The lower phase (lipids) was evaporated to
dryness at 45 °C under nitrogen. The interphase was used to
determine the protein concentration with the BCA assay. Samples
were stored at −80 °C.

Culture medium extraction for water-soluble metabolites
The water-soluble metabolites in the culture medium were
extracted with RP18 SPE columns (Merck, Darmstadt, Germany,
Cat#102014). Briefly, 50 µL medium was mixed with 50 µL H2O and
400 µL methanol/acetonitrile (5/3, v/v) containing internal stan-
dards (4 µM D4-glutaric acid, 4 µM D8-phenylalanine), vortexed
and ultrasound for three minutes. The supernatants were then
filtered through the RP18 SPE columns (activated by elution of
1 mL acetonitrile and equilibrated by elution 1mL methanol/
acetonitrile/H2O (5/3/2, v/v/v) before usage) after centrifugation
(5 min, 16,000 × g, 4 °C). The eluents were collected and mixed
with 400 µL of methanol/acetonitrile/H2O (5/3/2, v/v/v). The
mixtures were vortexed, ultrasound, centrifuged, and filtered as
before and the eluent was collected and evaporated in SpeedVac
overnight at 15 °C. Samples were stored at −80 °C.

Culture medium extraction for lipids
The lipids in the culture medium were extracted with methanol
and chloroform. Briefly, 200 µL medium sample was mixed with
800 µL methanol containing internal standards (6 µL Splash
Lipidomix). 120 µL 0.2 M HCl, 400 µL chloroform, 400 µL chloro-
form, and 400 µL H2O were added to the mix consecutively and
vortexed. The lower phase of the spun-down samples was
collected with a 200 µL micro syringe (Hamilton, Reno, USA) and
evaporated to dryness at 45 °C under nitrogen. Samples were
stored at −80 °C.

LC-MS analysis of water-soluble metabolites
Water-soluble metabolites from organoid and culture medium
samples were dissolved in 200 µl 5 mM ammonium acetate (in
75% acetonitrile (v/v)) before loading to LC/MS. LC-MS analysis
was performed on an Ultimate 3000 HPLC system (Thermo Fisher
Scientific) coupled with a Q Exactive Plus MS (Thermo Fisher
Scientific) in both ESI positive and negative mode. The analytical
gradients were carried out using an Accucore 150-Amide-HILIC
column (2.6 µm, 2.1 mm× 100mm, Thermo Fisher Scientific) with
solvent A (5 mM ammonium acetate in 5% acetonitrile) and
solvent B (5 mM ammonium acetate in 95% acetonitrile). 3 µl
sample was applied to the Amide- HILIC column at 30 °C, and the
analytical gradient lasted 20min. During this time, 98% of solvent

B was applied for one minute, followed by a linear decrease to
40% within five minutes and maintained for 13 min before
returning to 98% in 1min and appended with a 5-min
equilibration step. The flow rate was maintained at 350 µL/min.
The eluents were analyzed with MS in ESI positive/negative mode
with ddMS2. The full scan at 70k resolution (69-1000 m/z scan
range, 1e6 AGC-Target, 50 ms maximum Injection Time (maxIT))
was followed by a ddMS2 at 17.5k resolution (1e5 AGC target,
50 ms maxIT, 1 loop count, 0.1 s to 10 s apex trigger, 2e3 minimum
AGC target, 20 s dynamic exclusion). The HESI source parameters
were set as 30 sheath gas flow rate, 10 auxiliary gas flow rate,
0 sweep gas flow rate, spray voltage: 3.6 kV in positive mode,
2.5 kV in negative mode, 320 °C capillary temperature, and the
heater temperature of auxiliary gas was 120 °C. The annotation of
the metabolites was performed using the EI-Maven software
(Elucidata, https://www.elucidata.io/el-maven) with an offset of
± 15ppm.

LC-MS/MS analysis of lipids
The lipids from the organoid and culture medium samples were
dissolved in 100 µl of isopropylalcohol (iPrOH) before loading. The
analytical gradients were carried out using an Accucore C8 column
(2.6 µm, 2.1 mm× 50mm, Thermo Fisher Scientific) with solvent A
(acetonitrile/H2O/formic acid (10/89.9/0.1, v/v/v)) and solvent B
(acetonitrile/iPrOH/H2O/formic acid (45/45/9.9/0.1, v/v/v/v)). 3 µl
sample was applied to the C8 column at 40 °C, and the analytical
gradient lasted for 35min. During this time, 20% of solvent B was
applied for two minutes, followed by a linear increase to 99.5%
within 5 min and maintained for 27min before returning to 20% in
1min and appended with a 5-min equilibration step. The flow rate
was maintained at 350 µL/min. The full scan and ddMS2
parameters were the same as the analysis of the water-soluble
metabolites, except the scan range were adjusted to 200-1600m/z.
The HESI source parameters were also adapted with a 3-sweep gas
flow rate and a 3.2 kV spray voltage in positive and 3.0 kV in
negative mode. Peaks corresponding to the calculated lipid masses
(±5 ppm) were integrated using El-Maven software.

Metabolome and lipidome data analysis
Two of the 4-month-old organoid samples (one in the PT group
and one in the PTN group) were removed from downstream
analysis due to the low signal intensity of the internal standards.
For organoid sample normalization, the intensity of each target
was normalized to respective internal standards (positive/negative
standards for metabolites, lipid class standards for lipids) and the
sample protein concentration. The intensities of medium samples
were subtracted by the median of the blank medium before
normalizing to internal standards and protein concentrations to
visualize the changes driven by organoid metabolism. The
metabolomics data was further normalized by variance stabiliza-
tion normalization (VSN) with the VSN R package71 and significant
pathways in the Small Molecule Pathway Database (SMPDB) were
identified by the quantitative enrichment analysis with MetaboA-
nalystR72. The lipidomics data were further normalized by quantile
normalization with the Limma R package73, and the enrichment
was calculated by comparing the structural similarities with
ChemRich74.

Proteome and phospho-proteome sample processing and
data analysis
Sample preparation. The proteomics and phospho-proteomics
samples (five samples in each group, three organoids each
sample) were prepared according to a previously published
protocol with adaptations75. Briefly, cell pellets were resuspended
with lysis buffer (100 mM Tris-HCl pH 8.5, 7 M Urea, 1% Triton,
10 U/mL Dnase I (1 mM magnesium chloride, 1% benzonase, 1 mM
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sodium orthovanadate, phosphoSTOP phosphatases inhibitors,
complete mini EDTA free protease inhibitors) and lysed by
sonication. Cell debris was removed by 1.5 hours of 17000 g
centrifugation at 4 °C. 1% benzonase was added to the super-
natant, followed by incubation at RT for two hours. Protein
concentration was determined by the Bradford assay. Proteins
were precipitated using chloroform/methanol76, and the pellets
were resuspended (8 M Urea, 100 mM NaCl, 50 mM triethylammo-
nium bicarbonate (TEAB), pH 8.5) and reduced in 10mM
dithiothreitol (DTT) for one hour at 27 °C, then alkylated by
30mM Iodoacetamide for 30min at RT in the dark and the
reaction was quenched by adding additional 10 mM DTT. Samples
were subsequently digested by Lys-C at an enzyme: protein ratio
of 1:100 for four hours at 30 °C, diluted with 50mM TEAB to a
resulting Urea concentration of 1.6 M, and further digested with
Trypsin overnight at 37 °C in an enzyme: protein ratio of 1:50.
Digestion was stopped by acidification using 0.02% trifluoroacetic
acid (TFA, v/v). Digested peptides were desalted using C18
SepPack Cartridges (Waters) and resuspended in 0.07% TFA (v/v)
in 30% acetonitrile (v/v) and fractionated by on-column FE3+-
Immobilized Metal Ion Affinity Chromatography (IMAC) enrich-
ment on an Ultimate 3000 LC system using the method described
previously77. The two resulting fractions per sample, containing
either unphosphorylated or phosphorylated peptides, were
desalted by StageTips78. Before LC-MS/MS analysis, the dry
peptides were resolved in 50mM citric acid and 0.1% TFA.

LC-MS/MS analysis of proteomics
LC-MS/MS analysis was carried out on an Ultimate 3000 UPLC
system directly connected to an Orbitrap Exploris 480 mass
spectrometer (Thermo Fisher Scientific). Peptides were online
desalted on a trapping cartridge (Acclaim PepMap300 C18, 5 µm,
300 Å wide pore, Thermo Fisher Scientific) for three minutes using
30 µL/min flow of 0.05% TFA in water. The analytical multistep
gradient was carried out using a nanoEase MZ Peptide analytical
column (300 Å, 1.7 µm, 75 µm x 200mm, Waters) using solvent A
(0.1% formic acid in water) and solvent B (0.1% formic acid in
acetonitrile). A total of 150min of LC-MS/MS analysis time was
used per sample. The analytical step of the gradient was 134 min,
during this time, the concentration of B was linearly ramped from
4% to 30% (2% to 28%, for phospho-peptides), followed by a quick
ramp to 78%, and after two minutes the concentration of B was
lowered to 4% (2% for phospho-peptides) and a 10min
equilibration step appended. Eluting peptides were analyzed with
the mass spectrometer using data-dependent acquisition (DDA)
mode. A full scan at 120k resolution (380-1400 m/z, 300% AGC
target, 45 ms maxIT) was followed by up to 2 seconds of MS/MS
scans. Peptide features were isolated with a window of 1.4 m/z
(1.2 m/z for phospho-peptides) and fragmented using 26% NCE
(28% NCE for phospho-peptides). Fragment spectra were recorded
at 15k resolution (100% AGC target, 22 ms maxIT; 200% AGC
target, 54 ms maxIT for phospho-peptides). Unassigned and singly
charged eluting features were excluded from fragmentation, and
dynamic exclusion was set to 35 seconds (10 seconds for
phospho-peptides).

Target identification and data analysis
Data analysis was carried out by MaxQuant79 (version 1.6.14.0)
using an organism-specific database extracted from Uniprot.org
under default settings. Identification FDR cutoffs were 0.01 on the
peptide level and 0.01 on the protein level. For the phospho
enriched fraction, PTM was set to True and Phospho (STY) was
added as variable modification. The full proteome samples were
given a separate parameter group with the default variable
modifications. The match between runs (MBR) option was enabled
to transfer peptide identifications across RAW files based on
accurate retention time and mass-to-charge ratio. The fractions

were set in a condition that MBR was only performed within
phospho enriched and full proteome and within each condition.
The full proteome quantification was done based on the MaxLFQ
algorithm80. A minimum of two quantified peptides per protein
was required for protein quantification. LFQ, and phosphosite
intensities were filtered for target groups with a non-zero intensity
in 70% of the samples of at least one of the conditions and
normalized via VSN71. For missing values with no complete
absence in one condition, the R package missForest81 was used for
imputation. The missing values that were completely absent in
one condition were imputed with random values drawn from a
downshifted (2.2 standard deviations) and narrowed (0.3 standard
deviations) intensity distribution of the individual samples82. The
significance for each target was then calculated with Student’s
t-test and adjusted with Benjamini–Hochberg method.
The protein abundances of GB subtype signature genes42 were

plotted, and the enrichment P value was calculated with the
“ssgsea.GBM. classification” R package42. Enrichment analysis of
the full proteome was carried out with the GSEA software (NIH
Broad Institute, version 4.2.3) on Hallmark, KEGG, Reactome, and
GO biological process gene sets. Potential druggable targets were
identified by mapping the significantly differentially expressed
proteins (P adjusted < 0.05 and foldchange (FC) > 1) to a drug-
gene interaction database DGIdb43, and the combinations with an
interaction group score more than 5 were kept. The upregulated
phospho-sites (FC > 1) were mapped to a kinase/substrate
interaction database44 to identify upstream kinases, and the P
value for each kinase was calculated by Kinase Enrichment
Analysis45. The interactions were visualized by Cytoscape83

(version 3.9.1), and the largest subnetwork was shown in the
figure.

RNA sequencing and data analysis
We performed bulk-RNA sequencing on 2-month-old organoids
derived from both iPSCs (three organoids each sample, three
samples in each group), the RNA was extracted with Qiagen
Rneasy kit (Cat#74004). The RNA was extracted and purified
according to the protocol, and the library preparation and
sequencing with Illumina NovaSeq were performed by our in-
house facility. One WT sample failed sequencing and was
excluded from the following analysis.
Raw reads were aligned to GRCh38 with STAR (2.4.1)84 using

default parameters, the aligned reads were quantified by the
feature Counts in Rsubread package85 and TPM were then
calculated and used for following PCA analysis. Enrichment
analysis was carried out with the GSEA software (NIH Broad
Institute, version 4.2.3)67 on Hallmark, KEGG, Reactome, and GO
biological process gene sets by group comparison.

Organoid drug screen
Drug screens on several selected kinase inhibitors (Sellekchem),
TMZ (Sigma), one library containing FDA-approved drugs that can
penetrate through blood–brain barrier (269 drugs from TargetMol,
Massachusetts, USA), and one library containing drugs targeting
the possible targets identified in omics analysis (58 drugs from
MedchemExpress, New Jersey, USA). A list of drug information can
be found in Supplementary Table 6.
For drug screening, the organoids generated from Luc2+ iPSCs

were cultured with the culture medium containing kinase
inhibitors (5 days, 10 µM, applied daily), TMZ (6 days, 100 µM,
applied every other day), drug libraries (6 days, 10 µM, applied
every other day) or DMSO vehicle on the orbital shakers at 37 °C
with 5% CO2. BLI was performed before drug administration to
one (for daily administration) or two (for every other day
administration) days after the last dose. For BLI, the organoids
were incubated with 150 μg/mL D-luciferin in a 37 °C incubator
supplied with 5% CO2 on the orbital shakers for 15 min and then
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imaged with IVIS or Quick View 3000 (Bio Real, Salzburg, Austria).
To assess the treatment effects, the BLI signals were normalized to
the DMSO control measured on the same day, then compared to
before treatment. Drugs with a P value less than 0.05 and a signal
drop of more than 50% were considered effective. In addition,
100 μM BrdU (Sigma-Aldrich) was applied to the culture medium
after the final imaging and cultured for 2 hours, and the samples
were collected and stained as described above.

Organoid IC50 analysis
For drug testing, WT, PT, PTCC, and PTN organoids were exposed
to Aripiprazole, Osimertinib, and Lomitapide treatments over a
6-day period (applied every other day). The drug concentrations
administered to PT, PTCC, and PTN organoids were 0 μM, 0.01 μM,
0.1 μM, 1 μM, 3 μM, 7.5 μM, 10 μM, and 100 μM. BLI signals were
measured and analyzed as described in “Organoid drug screen”
section. The IC50 of each drug was calculated using Graphpad
Prism 8 (San Diego, CA, USA). Subsequently, the maximum IC50
concentrations of the drugs were administered to WT organoids,
and BLI signals were measured and analyzed in the same manner.

Mouse treatment
Lomitapide (MedchemExpress, Cat#HY-14667) was dissolved in
DMSO and freshly diluted in a solution containing 40% PEG400
(Sigma-Aldrich, Cat#81172), 5% Tween-80 (Sigma-Aldrich,
Cat#W291706), and 45% saline, resulting in a 5.2 mg/ml solution.
DMSO was diluted using the same procedure. 2 μL volume of
Lomitapide or DMSO was injected at a position 2mm to the right
of the lateral bregma and 3mm deep, with a flow rate of 0.2 µL/
min, using brain infusion cannulas (Yuyanbio, Shanghai, China,
Cat#SL-4) over 5 consecutive days (DMSO, N= 9; Lomitapide,
N= 9). Mice were monitored daily for signs of distress, including
continuous weight loss or neurological disorders (such as
hydrocephalus or impaired motor skills), and were euthanized
with CO2 as soon as related symptoms appeared. The collected
brains were subjected to histological analysis.

Mttp knockout and assays on Pten/Trp53 KO mouse BTSCs
Cas9 ribonucleoproteins (RNPs) were prepared immediately
before experiments by incubating 16 μg Cas9 protein (Sino
Biological, Beijing, China, Cat#40572-A08B) with 0.125 nM Mttp
sgRNA (Genescript, Nanjing, China) at 37 °C for 15 min. Pten/Trp53
KO mouse BTSCs were harvested using Accutase and then
electroporated with Cas9 RNPs using the EN100 program on the
4D-Nucleofector® Core, X, Y Unit (Lonza, Basel, Switzerland,
Cat#AAF-1003B). The electroporated cells were cultured in N2
medium for 48 hours after electroporation and then seeded as
single cells per well in a 96-well plate for 10 days. The single-cell
spheres were screened by Sanger sequencing (Biosune, Shanghai,
China), and the results were analyzed using the TIDE web tool57.
Two clones were selected and further validated by western
blotting and Lomitapide treatment. For Lomitapide treatment, the
cells were exposed to Lomitapide at 500 nM and 1000 nM for
48 hours, and then cell viabilities were assessed using CellTiter-Glo
(Promega, Cat#G7572) following the manufacturer’s instructions.
Luminescent signals were measured with an EnVision Plate Reader
(PerkinElmer, Waltham, USA). gRNA sequences (5’ to 3’): Mttp,
GGAAAACCGCAAGACAGCGT. Antibody dilutions: MTP (Santa Cruz,
Cat#sc-515742), 1:1000; α-Tubulin (Sigma-Aldrich, Cat#T9026),
1:3000.
For the proliferation assay of Mttp WT and KO mouse BTSCs, the

cells were dissociated using Accutase, and 5000 cells were plated
in a single well of a 96-well plate, then cultured for 2 days in N2
medium. Cell viability in each well was assessed using CellTilter-
Glo (Promega, Cat#G7572) following the manufacturer’s

instructions. Luminescent signals were measured with an EnVision
Plate Reader (PerkinElmer, Waltham, USA).
In the limiting dilution assay of Mttp WT and KO mouse BTSCs,

2, 5, 10, 15, and 20 cells were seeded into 20 wells of a 96-well
plate each. After 2 weeks, the number of wells containing
neurospheres was counted. The significance of the limiting
dilution assay was analyzed using the ELDA online tool86.

Quantification and statistical analysis
All the data analysis was performed with R (version 4.1.2),
Graphpad Prism 8 and Microsoft Excel. The 2D areas of the
organoids were measured with ImageJ (NIH) and the comparison
was carried out with two-way ANOVA by normalizing the size of
the organoids to match the average size of each group measured
on day 5. For cell number quantification, positive cells were
manually counted using the cell counter function in ImageJ.
Group comparisons of Kaplan-Meier survival analysis of xeno-
grafted mice and mice treatment were calculated with Log-rank
test. Students’ t-tests were applied when comparing variables
between two groups (paired t-test for drug treatment and
heteroskedastic for the rest). N numbers for each experiment
can be found in the corresponding figure legend. All data values
were presented as mean ± SEM and the P values are represented
as follows: ****P < 0.0001, ***P < 0.001, **P < 0.01, *P < 0.05, and
P > 0.05 is recognized as non-statistically significant (ns).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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