Decomposition of CT Contrast Agents: Single Spectral or Multiple CT Scans?

Stefan Sawall^{1,2}, Edith Baader^{1,2}, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Heidelberg, Germany ²Heidelberg University, Heidelberg, Germany

Aim

To find out whether a single PCCT acquisition should be preferred over multiple measurements.

Task: material decomposition.

Assumptions:

- zero patient motion
- zero contrast agent motion

Problem Statement

- Photon-counting CT (PCCT) can distinguish more than two materials.
- Using two contrast agents is often discussed. E.g.
 - iodine-gadolinium-enhanced (WXY)

– ...

- Is this the best way to go?
 Why not do two or more scans? E.g.
 - unenhanced, iodine-enhanced (W+WX)
 - unenhanced, iodine-enhanced, gadolinium-enhanced (W+WX+WY)

— ...

- Emitted spectra
 - Tube current I, no TCM
 - Tube voltage U, from 70 kV to 150 kV
 - Cu prefilter¹ thickness T either 0, 1, 2 or 3 mm
 - Tucker spectrum filtered by 1 mm Al + 0.9 mm Ti
- Detected spectra
 - Photon-counting detector, 1.6 mm CdTe
 - Ideal (rectangular) and realistic² spectral response
 - Up to B = 4 energy bins
 - Thresholds positions {20, 33, 50, 61, 65, 70, 81, 91, 100, 120} keV
 I Gd Yb Hf W Au Bi
- Dose = $CTDI_{32 cm} = \kappa(U) \cdot I$
- Image domain material decomposition
 - H₂O, I, Gd, Yb, Hf, W, Au, Bi

Results

W+WX vs. WX+WX, Two Patient Sizes, $B \le 3$, for X = I, Gd, Hf, Bi

200 mm, real, rb	lodine	Gadolinium	Hafnium	Bismuth	
w	48.8, 0.00, 48.8	48.8, 0.00, 48.8	48.8, 0.00, 48.8	48.8, 0.00, 48.8	
wx	14.7, 3.16, 3.39	12.4, 2.55, 2.74	10.1, 2.30, 2.47	8.39, 2.20, 2.35	
W+WX	34.9, 8.66, 9.29	34.5, 6.85, 7.35	34.7, 6.41, 6.88	34.9, 6.98, 7.49	2 scans
WX+WX	21.3, 6.08, 6.45	18.1, 3.88, 4.16	13.3, 2.85, 3.06	16.6, 4.03, 4.33	e.g. 1 DSCT scan
WX penalty	5.65, 7.51, 7.51	7.74, 7.18, 7.18	11.9, 7.76, 7.76	17.3, 10.1, 10.2	
WX+WX penalty	2.68, 2.03, 2.07	3.65, 3.11, 3.11	6.80, 5.05, 5.05	4.42, 3.00, 3.00	

400 mm, real, rb	lodine	Gadolinium	Hafnium	Bismuth	
W	7.12, 7.12	7.12, 7.12	7.12, 7.12	7.12, 7.12	
wx	2.28, 0.38, 0.41	2.03, 0.36, 0.39	1.62, 0.29, 0.31	1.63, 0.31, 0.34	
W+WX	4.53, 0.91, 0.97	5.04, 0.90, 0.97	5.06, 0.94, 1.00	5.11, 0.73, 0.78	2 scans
WX+WX	3.23, 0.69, 0.74	3.05, 0.60, 0.64	2.06, 0.45, 0.48	1.95, 0.37, 0.40	e.g. 1 DSCT scan
WX penalty	3.95, 5.56, 5.56	6.19, 6.11, 6.11	9.72, 10.3, 10.3	9.78, 5.41, 5.41	
WX+WX penalty	1.97, 1.72, 1.72	2.73, 2.26, 2.26	6.00, 4.33, 4.33	6.85, 3.81, 3.81	

Conclusions on W+WX vs. WX+WX

- The higher the atomic number the higher the penalties.
- Iodine (nearly) always has the best SNRD.
 - The reason could be that with iodine using very hard x-ray spectra (e.g. 150 kV plus thick PSP).
 - This makes WX look very similar as W, since the iodine contrast becomes very low. This is not the case for Gd, Hf or Bi.

X=lodine Plus Another Contrast Agent Y

	400 mm, real, rb	Y=Gadolinium	Y=Hafnium	Y=Bismuth	
-	WXY	0.74, 0.25, 0.17, 0.20	1.40, 0.38, 0.27, 0.33	0.89, 0.25, 0.24, 0.26	
	W+WXY	2.25, 0.41, 0.33, 0.38	2.25, 0.47, 0.43, 0.47	2.37, 0.34, 0.39, 0.38	
→	WXY+WXY	1.49, 0.41, 0.29, 0.35	1.56, 0.51, 0.30, 0.39	1.59, 0.46, 0.30, 0.37	
	WX+WXY G. dolinium Sca	1.82 0.40 0.40 D	B Thres.	holds Dos 0, 70} keV 100% · 200 keV 90% ·	
W	WXY	Y 90 kV 0 mr Y 70 kV 0 mr	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	3, 50} keV 30%	5.22 5.22 · 1.00 · 1.00 · 1.00
	W+WXY+WXY	2.27, 0.41, 0.35, 0.39	3.20, 0.60, 0.58, 0.63	3.24, 0.47, 0.46, 0.49	
→	WX+WXY+WY	3.34, 0.73, 0.78, 0.80	3.23, 0.74, 0.70, 0.77	3.31, 0.77, 0.69, 0.77	
	WX+WX+WXY	2.81, 0.62, 0.63, 0.67	2.81, 0.62, 0.69, 0.69	2.79, 0.58, 0.58, 0.62	
	WY+WY+WXY	2.45, 0.70, 0.52, 0.61	1.90, 0.66, 0.41, 0.51	1.73, 0.60, 0.34, 0.43	
	WXY penalty	$(0.80/0.20)^2 = 16.0$	$(0.82/0.33)^2 = 6.17$	$(0.77/0.26)^2 = 8.77$	
	WXY+WXY penalty	$(0.80/0.35)^2 = 5.22$	$(0.82/0.39)^2 = 4.42$	$(0.77/0.37)^2 = 4.33$	

Two Separate Scans with Motion

WX, WY					
400 mm, real, rb	Y=lodine	Y=Gadolinium	Y=Hafnium	Y=Bismuth	
X=lodine	1.61, 0.27, 1.61, 0.27	1.57, 0.26, 1.47, 0.26	1.38, 0.23, 1.29, 0.23	1.45, 0.24, 1.27, 0.24	
X=Gadolinium	1.47, 0.26, 1.57, 0.26	1.43, 0.26, 1.43, 0.26	1.26, 0.23, 1.27, 0.23	1.32, 0.24, 1.24, 0.24	
X=Hafnium	1.29, 0.23, 1.38, 0.23	1.27, 0.23, 1.26, 0.23	1.15, 0.21, 1.15, 0.21	1.19, 0.21, 1.11, 0.21	
X=Bismuth	1.27, 0.24, 1.45, 0.24	1.24, 0.24, 1.32, 0.24	1.11, 0.21, 1.19, 0.21	1.16, 0.22, 1.16, 0.22	

WX+WX, WY+WY						
400 mm, real, rb	Y=lodine	Y=Gadolinium	Y=Hafnium	Y=Bismuth		
X=lodine	2.28, 0.49, 2.28, 0.49	2.11, 0.45, 2.31, 0.45	1.76, 0.38, 1.73, 0.38	1.54, 0.33, 1.72, 0.33		
X=Gadolinium	2.31, 0.45, 2.11, 0.45	2.16, 0.42, 2.16, 0.42	1.83, 0.36, 1.65, 0.36	1.62, 0.32, 1.66, 0.32		
X=Hafnium	1.73, 0.38, 1.76, 0.38	1.65, 0.36, 1.83, 0.36	1.46, 0.32, 1.46, 0.32	1.32, 0.29, 1.50, 0.29		
X=Bismuth	1.72, 0.33, 1.54, 0.33	1.66, 0.32, 1.62, 0.32	1.50, 0.29, 1.32, 0.29	1.38, 0.26, 1.38, 0.26		

Two Separate Scans (with Motion) vs. One Simultaneous Single Scan

400 mm, real, rb	X	Y	SNRD of W, X, Y	СТ	Comments
WX, WY	Iodine	lodine	1.61, 0.27, 0.27	SSCT	Today's biphasic liver exams with PCCT
WX+WX, WY+WY	lodine	lodine	2.28, 0.49, 0.49	DSCT	with iodinated contrast agent (X=Y=lodine)
WXY	lodine	Gadolinium	0.74, 0.25, 0.17	,	
WAT	lodine	Hafnium	1.40, 0.38, 0.27	SSCT	Proposed (future) biphasic liver exams
WWW WWW	lodine	Gadolinium	1.49, 0.41, 0.29	рест	with two contrast agents (X≠Y)
WXY+WXY	Iodine	Hafnium	1.56, 0.51, 0.30	DSCT	
Gadolinium penalty for SSCT		5.73, 1.17, 2.52	SSCT	WXY vs. WX, WY	
Gadolinium penalty for DSCT		2.34, 1.43, 2.85	DSCT	WXY+WXY vs. WX+WX, WY+WY	

Conclusions

- lodine seems to be a very good agent.
- Investing into motion correction would be beneficial due to the very high penalties.
- Dual source PCCT is superior to single source PCCT.
- Biphasic liver exams are best done as two independent dual source PCCT scans with iodinated contrast agent.

Limitations:

- Simulation study only
- No CT reconstruction involved. CT values and noise were estimated in projection domain.

Thank You!

Marc Kachelrieß, German Cancer Research Center (DKFZ), Heidelberg, Germany

Job opportunities through marc.kachelriess@dkfz.de. Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.