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PHOTON-COUNTING CT



Availability of Edge on design (Si only)
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The additional factor 2 in the detector pixel size column indicates that some scan modes may use binning.




Diagnostic CT (Conventional Detector) Photon Counting Detector CT
of a Low Contrast Phantom of a Low Contrast Phantom

2D-Low-Contrast

Photon Counting Detector

C=0HU,W=80HU dkfz.

Phantom |



TiO,-based reflector
(about 0.1 mm)

Indirect Conversion

=

(energy-integrating)

Gd,0,S

7.44 g/cm?3

i.e. max O(40-10%) cps

Direct Conversion

PC

(photon-counting)

pile up
/problem

i.e. max O(40-10°) cps

Requirements for CT: up to 10° x-ray photon counts per second per mm?2,

Hence, photon counting only achievable for direct converters.
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Energy-Selective Detectors:
Improved Spectroscopy, Reduced Dose?

Ideally, bin spectra do not overlap, ...

Spectra as seen with 4 bins after having passed a 32 cm water layer.



Energy-Selective Detectors:
Improved Spectroscopy, Reduced Dose?

... realistically, however, they do!

Spectra as seen with 4 bins after having passed a 32 cm water layer.



Photon Events

« Detection process in the sensor
* Photoelectric effect (e.g. 80 keV)
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Photon Events

« Detection process in the sensor

« Compton scattering or K-fluorescence (e.g. 80 keV)

Energy dispersion due to
secondary photons

Threshold

CdTe
5.85 g/cm3




Photon Events

« Detection process in the sensor

 Photoelectric effect (e.g. 30 keV), charge sharing

Energy dispersion due to N=
charge diffusion
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No Electronic Noise!

 Photon counting detectors have no
electronic noise.

 Extreme low dose situations will benefit
— Pediadric scans at even lower dose
— Obese patients with less noise
— Industrial CT with very long exposure times per frame

No readout noise. Single events visible!

18 frames, 5 min integration time per frame, x-ray off



Siemens Naeotom Alpha
The World‘s First Photon-Counting CT

SIEMENS ...,
Healthineers **

Tubes

— tube A: 120 kW ~ 1, MW
— tubeB: 120kW [~

— Focal spot size down to 181 pym

Detectors

— pixel size down to 150 pm
— 288 detector rows
— 2752 detector columns

Speed
— up to 4 rotations per second
— up to 737 mm/s scan speed

50 cm FOM
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Alpha PCCT at University Medical Center Mannheim (UMM), Heidelberg University, Germany



Detector Pixel Force vs. Alpha

Force Alpha (Quantum Plus) Alpha (UHR)
920 x 96 detector pixels 1376 x 144 macro pixels 2752 x 120 pixels
pixel size 0.52 x 0.56 mm at iso pixel size 0.3 x 0.352 mm at iso pixel size 0.151 x 0.176 mm at iso
avg. sampling 0.56 x 0.6 mm at iso avg. sampling 0.344 x 0.4 mm atiso avg. sampling 0.172 x 0.2 mm at iso
57.6 mm z-coverage 57.6 mm z-coverage 24 mm z-coverage

PC PC

ASG

Spectrum

T

T

70 kV

20 keV

90 kV

20 keV

120 kV

20 keV

140 kV

20 keV

100 kV Sn

20 keV

140 kV Sn

20 keV

| . Focus sizes (Vectron): 0.181x0.226 mm, 0.271x0.7316 mm, 0.362x0.497 mm at iso
B which are 0.4x0.5 mm, 0.6x0.7 mm, 0.8x1.1 mm at focal spot

ASG information taken from [J. Ferda et al. Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience. dkfz
@

European Journal of Radiology 137:109614, 2021]



The “Small Pixel Effect”

Noise
A
I 1 - - 3
. or “To Bin or not to Bin?”
IS nice pnrase
— was coined
300 HU , by Prof. Norbert Pelc,

: Small detector pixels Stanford University.
I
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Kachelriel3, Kalender. Med. Phys. 32(5):1321-1334, May 2005



Macro
B70f

77 HU

UHR
u80f

+ 158 HU
taken at the same dose at Somatom CounT. ‘
C =1000 HU, W = 3500 HU




Photon Counting used to Maximize CNR

With PC, energy bin sinograms can be weighted individually, i1.e. by
a weighted summation.

To optimize the CNR the optimal bin weighting factor
w,, IS given by (weighting after log):

Ch
Wo & Vb w9 Ws Wy
The resulting CNR Is , I
CNR2 _ (Zb Wy Ob) & |
2 b wg‘/})

At the optimum this evaluates to

B
CNR? = ) "CNR;j
b=1

Faby, Kachelrie3 et al., MedPhys 42(7):4349-4366, July 2015.



Material Decomposition or CNR Maximization?

« W =soft tissue (water) signal, X =iodine signal

« Assume same noise N, e.g. 50 HU, in both bin measurements M; and M,
— Var M; = Var M, = N2 regardless of whether iodine is present or not

« PCCT measurement

— Measurement 1 (high bin): M; =W + 0.25 X CNR?= X?/16 N?

— Measurement 2 (low bin):  M,=W + 0.5 X CNR?2= X2/ 4 N2
« Material decomposition

— Estimated iodine: 4 (M, - M,) Variance = 16 (Var M, + Var M;) =32 N2 SNR? = X2/32 N?

— Estimated soft tissue: 2 M; — M, Variance = 4 Var M; + Var M, =5 N? SNR2=W?2/ 5 N?
« CNR maximization

— Compute (1 -w) M; +w M, Variance = (1 -wW)2 N2+ w2 N2=(1-2w + 2 w?2) N2

— lodine value minus soft tissue value = Contrast=(1-w) 0.25 X +w 0.5 X

— Maximizing CNR yields w = 2/3 CNR? =5 X?/16 N2

This simple toy example assumes iodine to contribute half as much to the gray value for the high bin as for the low bin. dkfz
[

CNR refers to the contrast between iodine and soft tissue. SNR refers to the contrast between the decomposed material and air.



Linear Mixing Technigues

Original low spectrum III Original high spectrum
image image
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Summary on PCCT

Higher efficiency
— better image quality
— reduced measurement times

No electronic noise

— very long exposures possible
— potential to overcome photon starvation

Spectral information on demand
— material discrimination
— artifact reduction
— combination with DECT acquisition possible and reasonable

High frame rates also for off-the-shelve PC detectors
— can be of interest for inspection tasks



ARTIFICIAL INTELLIGENCE



Overview A hybrid ring artifact reduction
algorithm based on CNN in CT

images

Nauwynck et al., Ring Artifact Reduction in Sinogram Space Using Deep
7 Laaming, Proc. CT Meeting 2020:486-489, 2020

* Comection inimage domain:
~ Chang et al ., A Hybrid Ring Artifact Reduction Algorithm Based on CNN in CT
imiges s..u, 50 0721107226, 019
~ chao

anc'lrm Amﬁ;mt anlMM Phys. Med. Bml. .4{23) 235015 2019
- Komios ot o, Deap Neurs Networks

Correction:
. R vk i AVt by O Moo e O
Total Variation Loss, Neural

with
Computing and Applications 31(9):5147-5158, 2019
- Lvetal, Artifacts e

CT via Deep.

. inboth,
~ Fang et al., Comparison of Ring Artifacts Removal by Using Neural Network in
Different Domains, MIC, 2018

~ Fang et al., Removing Ring Artefacts for Photon-Counting Detectors Using
Neural Networks in Different Domains, IEEE Access 8:42447-42457, 2020

Kornilov et al. (2021)

* This work addresses corrections of remaining ring artifacts after
vendor corrections (hard- and/or software-based) in micro CT. Actually
thoss artfacts are typically arce, not ful ings.

ataset conaists of 8 reconstmctions (8 for nllnlng‘ 1 for

') (from a
Bruker Skyscan 1172 micro CT). They .wuea ‘automated and manual
segmentations to the ring artifact areas (in total ~2000 ented
artifacts). These artifacts are then transferred to “clean” regions in
order to generate training and validation data pairs.

* A two stage correction Is Implemented: first a U-Net Is used to find and
ugmm the artifact, and then a second CNN with some convolutional

ers s used to perform an Inpainting. The training of each stage Is.
p-rmm-a successively. A 2D U-Net and 3D U-Net are compared.

"Rosus or T segmentazon part PeM) and il images {9ght.

+ My conclusion:

= gy

dikfz.

Nauwynck et al. (2020)

* Here a ring artifact correction In sinogram space is proposed.

+ Clean data from the Cancer Imaging Archive (45640 Images) are
forward projected. Ring artifacts are extracted from measured data
with ring artifacts (from Tomobank) and randomly sampled on the
clean data to get training pairs. The dataset was divided into training
(42240 samples), validation (1000 samples) and test set (2400 samples).

e Using + A 2D U-Net Is used with a custom loss function that consists of a L1-

0 loss and a Sobel-l0ss.

Ring Artifact Reduction in S

Wang et al.

Corecsad vome sices shown
e e e PN
5520 vatoes. The s

5 e e e

oo
]

agesre =

given in 2 strange window where | (- £ cv

PRy el R
.

omparison of Ring Artifacts Removal by Us

B2 Neural Network in Different Domains

- My conclus\on

~ Thepaperis
el the R 055 0 benencuor the comecion.

~ Thedesignof the results is very bad! Actually one Is only able to see differences inthe.
corrections in the last image row, where an ROI is shown.

& difz..

Fang et al. (2020) Fang et al. (2020) - Results and My Conclusion

* This publication la the reviewsd peper ofthe work shown on the previous skdes. + My conclusion:

28mo kes snd skmlar experiments are shown the authors additi resitts it
~ This paperts very helptul, especially because it

massured mouse data on & PCD (6V3500, sV PRODUCTS, Saxonbarg, PA) which has
S prete vt Fribtead, compares difierentdomains fof esplearning

~ Their method, combiring projection snd image domain.
shows the best results.

~ Kseems thata correctionin

+ Asin Fang otal. anln)m authors compare the ring artifact correction results of a deop
learning correction jon domain, in image domain (cartesian), in image domain
(Pt s comeprelvitivs modl: T metwor srchitsciors o et o 1 S0

+ The training, validation and test data are the same a5 on slide 19. Their model to simulate
ring artfacts on projection data consists of a constant factor and an offset:

Here the ,, and o, for the training data are approximated to fit their m

projection domain
domain corrections. Maybe the
ermlmoumm < Basedconrecioncoudbe

der
Detter overail, | would

dkfz..

Chang et al. (2019)

The reference data for this image-based correction are taken

from 10 full dose clinical CT images.

Ring artifacts are simulated on these data to generate a data

base of ??7? paired images for supervisedtraining of a CNN.

Two channel input: 64x64 image patches of uncorrected and
velet-Fourier) corrected images are used as inputs

* directly fference

1the Wi e cogjpary

al corr

rrecuon.

Hm

Chao et al. (2019)

+ Animagoe-based correction is proposed which removes stripes in polar coordinates. The
v«nmmw-mmmm architecture is very simple.

- The data constist of 160 clean brain images and 300 abdomen images, whi
IGM 16, respectively 30 different simulated ring artifacts. For testing m a t-l M 40
brain images fs ‘and the sigorithm s tested on measured abdomen data.

+ Procedure:
tomography ring artifacts via radial basis fun -

" (ot mentoned)

Nauwynck et al. (2020) - Results and My Conclusion

Removing ring artifacts in CBCT images via generative adversarial
networks with unidirectional relative total variation loss

‘Campariaon of G pertormance of e propoted method (NN) o other  Rewling CT reconatrocions of e proposed
Correcions on the smmulaied Satzsets ogading PINR and SSIM method (6 for massured data

+ My conclusion:

domain: simulste

s by using messurec 200.
e lapelied Sata and fivaiy periorm the Cortecton

el waining et

Fang et al. (2019)

ent unp ring artifact

« This paper provides a comparison of di
methods: i i

mod-l All usea 5-stage U-Netand mi Izmr ‘on both, raw-data and
ion layer implemented).
+ Clean data is acquired from the AAPM Low Dose CT Grand Chllltngt.
The data ges), ion (600 images)
and hsuna At (526 unag.s) and oy et e Uineldie s

et catworks ' conversonal waveiet Fourer
W] Comecuon o semuend o o8 vevahe scen, G erence mmepee

+ My conclusion:

= Theinterestngp:
‘methads In diferent domains etc..

Lv etal. (2020)

. ing andri on of
PCCTd-u in image domain via a CNN.
* They solely To have data
y performa ion viaa Split-Bregman
mmﬁvo’ ge-b: i i
Image Denoising and Ring Artifacts Removal 2 for training,

for Spectral CT via Deep Neural Network lesllng was 2240 in tbe ra(lo1 1:5. An MSE-like cost function Is

'rn pCD they are using is not specified, experiments
peg‘;)km»edv with 8 energy bins with thresholds ranging 'rom 25 keV
10 90 ke!

dkfz..

dicfz..

Deep Neural Networks for Ring Artifacts
ragments of CT

gmentation and Corrections in
Im.

+ My conclusion:

Sachardhuct” e raed applied orky In ie sractares. I va, the
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o

Wang et al. (2019)

« Herea GAN is used to remove ring artifacts from CT volumes.
The image i first lranslerred to polar coordinates, where ring
artifacts appear

. 10 ing artifacts
brain CTimages in the trai
contained 1000 simulated lmms = :ddltlm\ally S cher

images with real ring artifacts.

DI ﬁln 1 0000

Removing Ring Artefacts for Photon-Counting
Detectors Using Neural Networks in

Different Domains

WEI FANG®, LIANG LI, (Sanlor Membar, IEEE). AND THIQIANG CHEN

Lv et al. (2020) - Results and My Conclusion
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Deep learning based simezram extension maethod {or intecior
uted

Deep Detruncation i .
I of DL-based o 1. 1 Kedale™'. Hﬂlh-:ﬁ::o\&).h(!‘—d
I-‘Muhlw u---«,-lon-.o.l.

Foseswsh Ut of Modusl
T

+ S: Sinogram domain
network

F: Duai-domain
Information fusion
operation

ey —————
Modin i T3 1ot o] s 0t (321

dikfz.

Evatuation of novel Al-based extended field-ol-view CT reconstructions

Pemrars a1al Erpmmman of awnd Al Mued smmred faia o4 view G reesryrvaT
i el T T

+anre o Sl 1 Arrad et A of e T reearrsceamy
st A ety

a Extrapolation From Learned Prior |
for Trunc: Correction in

Generative adversanal networks improve interior computed
tomography angjography reconstruction

1) Input: truncated
i

2) Extended with
sinogram extension
GAN

4) reconstruction post-
processing GAN Is
used 1o yield an

:

sinogram before final
flitered backprojection

5 W Rt w k. ks s e sl b ey

Pecenreveden Dhomad Pren. £a3 Expat T WA (031

= [PEEpPetruncation

Results Deep Detruncation

Classification of DL-based reconstruction methods

+ S: Sinogram domain
network

+ I image domain
network

+ P Projection operation

* R: Reconstruction
operation

+ F: Dual-domain
Information fuslon
operation

dikfz.

Results

5P Presars arel Prammman of swd Al Aired srmerd A o view CT reesyraevam
M Py PS5 ()

Data Consistent CT Reconstruction from
Insufficient Data with Learned Prior Images

for Truncation Correction in
d Tomog

Input: WCE-precorrected Image
Output; corructed Image

Image is then I d- and the
projections are combined with the original raw data.
Finaily, the data are
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cak Artifacts in CT
ng: Pilot Results

Gjesteby, 2019

Metal artifact reduction on cervical CT
images by deep residual learning

Deep Learning based Metal Inpaint
Projection Domain using additional Ne
Projection Information

Gjesteby, 2017

+ Takes 32x32 input patch from NMAR image and
produces 20x20 output patch

« Very basic CNN

ae% s

i)

S

Claus, 2017

. evaluated on with metal
circlein the center (no other positions tested)
+ Data are heavily simplified (random ellipses)!

+ Inputs are 2 81x21 sized patches from the sinogram
next to metal patch. Won't work for complex metals.

Relatively small network (4 layers)

Gottschalk, 2020
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Decp Neural Network for CT Metal Artifact

Reductivin with @ Peicepiual Loss Fuiiciion

L ey g S, O T, Yo . e .
NI e T T e

Gjesteby, 2018

i s il |

Gjesteby, 2018

- Inputs for the network are the NMAR image and the
high-pass filtered original image

+ Corrects streaks after NMAR

 Loss function is MSE or perceptual loss (from VGG

twork)
Wl SE shags oveggigoothing

I K ! @0

' EE u s residual error

Gjesteby, 2018

« Same network as in previous work

« Detail image is the high-pass filtered original image

« Detail image and NMAR image are both put as inputs
in 2 streams that converge later in the CNN

+ Network uses residual error and cost function is a
combination of MSE and perceptual loss

Zhang, 2018

M T images. Artifacts are

Grssied by e et back-projecting soft tissue,
bone, and metal

« Network input is patch of artifactimage /and output
is the residual, i.e. R= /- GT

« Loss function is MSE of the residual

+ Learning the residual is found to be better than

learning the artifact-free image (no images)

Decp Learning Based Metal Inpa
in the Projoction Domain: Initial Resul

Gottschalk, 2020

« U-Net corrects CBCT projections
« Has metal mask and 10 neighbouring projections as
additional input channels

Liao, 2019

« Firstreplaces metal trace in the projections (i.e. fixed
angle but varying £ and 2)

« Then the projections into si and
uses a second network to improve those

« Both networks are GANs with a U-Net generator and
CNN discriminator

« Uses a Mask Pyramid to ensure the metal mask is
seen by all stages of the U-Net

+ Data are regular CT scans with metal traces from
other patients imposed on them

Convolutional Neural Network Ba
Metal Artifact Reduction in X-
Computed Tomography

Fast Enhanced CT Metal Artifact Reduction using
l)um Domain Deep Learni

End-to-snd. Besde Netzwerke sind U-Nots. SE-Net wrd mit Loss on Bidroum wiavet,

Gottschalk, 2019

+ Corrects C-Arm projection data

+ Data were obtained by placing metal on top of human

knee cadavers
* Loss function is MSE

* Networks are based on U-Net with additional skip
connection from original image to output

+ Basic network can be used to implicitly segment the
metal for the Mask-MAR-Net

+ Providing a metal mask significantly improves
results

* Results are blurred slightly

Ghani, 2019

* Metal trace is replaced via a CGAN

+ Uses transfer learning from training data to real data;
not described in depth

Not applied to medical images

Xing, 2019

+ Perform initial LIMAR to obtain images with
interpolation artifacts

« Apply U-Net to pre-corrected images to reduce
artifacts

+ Network minimizes L2-norm loss outside of the metal
regions

Yu, 2018

+ Training data are generated from clinical data with
metal artifacts added afterwards through
rd- & back.

+ Cost function is MSE

+ CNN gets patches from the artifact, BHC corrected,
and LI corrected image as input, produces corrected
patches

+ Prior image is generated from CNN result by
segmenting water and setting it to the average value
of all water pixels and leaving bone intact

* Metal trace in the uncorrected sinogram is replaced
with values from the prior image

+ Having different types of MAR as input improves
results

Ghani, 2019

%
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Lin, 2019

+ Input are LI pre-corrected sinograms/images

+ Firstimproves the sinograms through a U-Net with
mask pyramid (so all parts of the U-Net see the mask)

+ Then applies FBP (Radon Inversion Layer) and uses
the result as input for a second U-Net, which
improves it in image domain

+ Unclear how/if the LI and CNN results are combined
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Sparse View Restoration Example

Ground truth Total variation Proposed
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=+ 2x2 Max pooling =+ 2x2 Avg unpooling 1x1 Conv 3x3 Conv, bnorm, ReLU = Skip + Concat

Figure 1. The proposed deep residual learning architecture for sparse view CT reconstruction.

(c) 96 view

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT
Reconstruction via Persistent Homology Analysis. ArXiv 2016.




Ground truth Total variation Proposed

(a) 48 view

3
2
>
q
O
C)

(c) 96 view




Component-Specific Denoising/Desparsifying

We assume to have one long-acquisition scan of the component
Generate training data via random transformations and deformations

Generate datasets for training, validation and : S
— GT: Long-acquisition ground truth
— UN: undersampled + noise reconstruction (80 projections, Poisson noise)

SAMSUNG

Train three U-Nets
— Sh-Unet-MSE: Shallow structure (3x downsampling, initial filter size: 16) with MSE
— Unet-MSE: Deeper structure (4x downsampling, initial filter size: 16) with MSE
— Unet-Adv: Deeper structure trained in WGAN-GP setting with perceptual and MSE
component

All networks are trained on patches of size 2562 on the UN dataset



Results
Test Data (UN) - Sh-Unet-MSE
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Ground Truth
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Standard Simulation-based
reconstruction artifact correction

Simulation-based removal of

» beam hardening artifacts

- off-focal radiation artifacts
focal spot blurring artifacts

detector blurring artifacts
scatter artifacts | Q

J. Maier, M. Kachelriel3 et al. Simulation-based artifact correction (SBAC) for
metrological computed tomography. Meas. Sci. Technol. 28(6):065011, May 2017.



Deep Scatter Estimation (DSE)
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J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
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Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to physical interaction
probabilities.

« Simulating a large number of photr~ *

the actual scatter distri-" 10 hOU\'s

approximates

_ul .|p|e'[e Scatter
distribution




Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
Input: ] 384 x 256 x 4 scatter estimate

—
onds

Downsampling
and application pe" ‘\'.0

Upsampling
of operator B to original
T(p) =pe P O- size
48 x 32 x 160
24 x 16 x 320
O- 3 x 3 Convolution, RelLU
12 x8x 480 » 1 x 1 Convolution, ReLU
O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 O~ Depth Concatenate

Projection data

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Simulation Study: Training Data

« Simulation of 16416 projections using different objects and parameter settings to
train the DSE network.

« Training on a GeForce GTX 1080 for 80 epochs using the Keras framework, an
Adam optimizer and a mini-batch size of 16.

Tilt angle: _
. Isocenter-detector-distance

BT 0 . .30° 60° 90° 400 mm, 500 mm, 600 mm
‘Compressor DR '
. (Titanium PN
. alloy)
- cylinder {}| l" | _ _
. head . Scaling (size) ‘
(Aluminum) 08,12 ")i‘ﬁ

Casting ] . , :
E(Aluminum) . Poisson noise
| : V(;rll'sage' Tin i
Cassette == : 225 kV,. Plrgf#]trenr. MC scatter

(Steel) ====F% 275 KV 2. ’ mm,

320 kV '

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Simulation Study: Testing Data

« Simulation of atomography (720 projection / 360°) of five components using
acquisition parameters that differ from the ones used to generate the training data

set.

Tilt angle:

iCor_npr(_assor . Profile
- (Titanium A“\ (Aluminum)
alloy)

o

' (Aluminum)

. Casting
((Aluminum)

Cassette
(Steel)

Isocenter-detector-distance
550 mm

Scaling (size)

1.0 _'A}“ﬁ

1/ [ +
. Poisson noise
Tube Tin +
Voltage: TP
250 kV Plr.eSflrIr:?nr. MC scatter

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Results

Scatter estimates for simulated testing data

Model Primary Scatter ground  |Kernel - GT| [Hybrid - GT| |DSE - GT|
intensity truth (GT) | GT | GT | GT

’
1%
mean

absolute
percentage
error

u over

_______ C 3600

0-3 projections

L)

C=0.015, W =0.020 C=0%, W=50% L




Results

CT reconstructions of scatter corrected testing data

Scatter free (GT) No correction No correction - GT ~ Kernel-based - GT Hybrid - GT DSE - GT

C/W =0.035/0.015 mm

C/W =0.135/0.08 mm-/W =0.135 / 0.08 mm!

oo o)




Application to Measured Data

Measurement at DKFZ table-top CT
Tomography of aluminum profile
720 projections, 360°

110 kV Hamamatsu micro-focus tube
Varian flat detector

Components

Detector elements 768x768 768x768
Source-detector distance 580 mm 580 mm
Source-isocenter distance 100 mm, 110 mm, 120 mm 110 mm
Tilt angle 0°, 30°, 60°, 90° 0°
Tube voltage 100 kV, 110 kV, 120 kV 110 kV
Copper prefilter 1.0 mm, 2.0 mm 2.0 mm
Scaling 1.0

Number of projections 8208 720



Results

Performance of DSE for measured data
Projection data

MC scatter |Kernel-based - MC|/MC  |Hybrid - MC|/MC |DSE - GT| / MC

3 I\ = 10)/ D) = 2 K0, / )
0Y0 WVIAY 0. 490 MARE 2.5% MAPE
20 PIBJECTIO, (720 prejections) (720 projections)

Component

C=0.04, W =0.06 C=0%, W =50% C=0%, W =50% C=0%, W =50%

Reconstructions
Monte Carlo (GT) No correction Kernel-based Hybrid D)=

SEE
SN b o

CT reconstruction

Difference to
Monte Carlo




A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

Truncated DSE

40 x 40 cm?
flat detector

Ground truth Uncorrected MC-corrected DSE

40 x 40 cm?
flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelriel3 et al.
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

J. Maier, M. Kachelrief3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



DSE for Cross-Scatter Correction (xDSE)

Ground Truth Uncorrected xDSE (2D, xSSE)
MAE =42.6 HU MAE =4.9 HU

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU

J. Erath, T. V6th, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrie3. Deep learning-based forward

and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.



DSE for Coarse ASG

Primary
ohoton Scattered

Coarse ASG photons

Naeotom Alpha
1376 x 144 macro pixels
pixel size 0.3 x 0.352 mm at iso

With.standard DSE

ASG

.

—— left columns
L) —— right columns

Coarse ASGs lead to
changing scatter _
intensity between With coarse DSE

neighboring pixels.

J. Erath, M. Kachelriel3 et al. CT-Meeting 2022. This paper received the “Highest Impact Paper Award” for the highest impact score at the 7th dkfz
[

International Conference on Image Formation in X-Ray Computed Tomography in June 2022



Conclusions on DSE

« DSE needs about 1 ms per projection.
« DSE is a fast and accurate alternative to MC simulations.
 DSE outperforms other approaches in terms of accuracy and speed.

 Facts:

— DSE can estimate scatter from a single (!) x-ray image.

— DSE generalizes well to different geometries, scanners and objects.

— DSE variants for cross-scatter and coarse ASG scatter prediction are available.
— DSE may outperform MC even though DSE is trained with MC.

« DSE is not restricted to reproducing MC scatter estimates.

« DSE can rather be trained with any other scatter estimate, including
those based on measurements.

« DSE can also be used to simulate scatter (at somewhat lower accuracy).

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



UDSE — Basis Principle

Input: CT scan 128x96x180

128x96x180
=

(intensities /)

64x48x180

64x48x180

o=

32x24x180

32x24x180

16x12x180

{
16x12x180

8x6x180

Channels of the convolutional layer:
32 64 128 256 512

. Pep transform ’ 3x3x1 Convolution (stride = 1), ReLU

| e— )

8x6x180

Output: Scatter
distribution S

1024 512 256 128 64 32/1

’ 2x2x1 Max pooling . Concatenate 2x2x1 Upsampling

Scatter correction
| _=[-§

corr —

v

Log transform
Peorr = _Iog(lcorr)

¥

CT reconstruction
fcorr =X Pcorr

Discriminator / critic network

144x144x48

72x72x48

36x36x48
18x18x48
9x9x48

1x1x48

..' 1x1x] ==

WGAN
LOSS

Channels of the convolutional layer:
32 64 128 256

512/1

’ 3x3x1 Convolution, Layer normalization, LeakyRelLU

. 2x2x1 Max pooling 9x9x1 Convolution ’ Z-average




Results

Scatter Estimates

Primary + scatter (mput) Ground truth DSE scatter prediction uDSE scatter prediction

C=0.06, W=0.12 lC 0007‘C 0007‘C 0007‘

" e ot

Error w.r.t.
ground truth




Results

CT Reconstructions

Ground truth No correction DSE correction uDSE correction
[
o T _
S /g Moo Qu
= o] (" . ! \\
o &
(&) 2 ’ - : z
8 b, N I 50 o
=
@) <

C =200 HU, W= 700 HU

Difference to ground truth




Summary on Al for CT Image Formation

 Powerful tool that allows to solve yet unsolved problems
— Underdetermined situations, where Al brings in prior knowledge
— Computational demanding problems, where Al reduces the compute time

 Results have to be taken with care
— Images often look great, but are they true?
— Utilizing too much prior knowledge will result in fake content
— Proves do not exist, the networks‘ output cannot be eplained

 Vendors may tend to overemphasize the benefits from Al
— Sale by nice looking images



Th an k YO u ! (Cﬁ?l The 8 International Conference on

Image Formation in X-Ray Computed Tomography

* This presentation will soon be
available at www.dkfz.de/ct.

« Job opportunities through DKFZ’s
international PhD or Postdoctoral
Fellowship programs
(marc.kachelriess@dkfz.de).

« Parts of the reconstruction
software were provided by
RayConStruct® GmbH, Niurnberg,
Germany.

Conference Chair
Marc KachelrieRB, German Cancer Research Center (DKFZ), Heidelberg, Germany

www.ct-meeting.org



	Folie 1: Computed Tomography 2.0  Photon-Counting and Artificial Intelligence
	Folie 2: Photon-Counting CT
	Folie 3: Availability of Diagnostic Photon-Counting CT
	Folie 5
	Folie 6
	Folie 7: Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?
	Folie 8: Energy-Selective Detectors: Improved Spectroscopy, Reduced Dose?
	Folie 9: Photon Events
	Folie 10: Photon Events
	Folie 12: Photon Events
	Folie 13: No Electronic Noise!
	Folie 14: Siemens Naeotom Alpha The World‘s First Photon-Counting CT
	Folie 15: Detector Pixel Force vs. Alpha
	Folie 16: The “Small Pixel Effect” 
	Folie 17
	Folie 18: Photon Counting used to Maximize CNR
	Folie 19: Material Decomposition or CNR Maximization?
	Folie 20: Linear Mixing Techniques
	Folie 24: Summary on PCCT
	Folie 25: Artificial Intelligence
	Folie 26: Deep RAR Examples
	Folie 28: Deep Detruncation
	Folie 29: Deep MAR Examples
	Folie 30: Deep MAR Examples
	Folie 31: Sparse View Restoration Example
	Folie 32
	Folie 34: Component-Specific Denoising/Desparsifying
	Folie 36: Results Test Data (UN) Punkt Sh-Unet-MSE
	Folie 41: Ground Truth
	Folie 42: Shallow Unet
	Folie 43: Deep Unet
	Folie 44: Deep Adversarial Unet
	Folie 52
	Folie 53: Deep Scatter Estimation (DSE)
	Folie 56: Monte Carlo Scatter Estimation
	Folie 57: Deep Scatter Estimation Network architecture & scatter estimation framework
	Folie 58: Simulation Study: Training Data
	Folie 59: Simulation Study: Testing Data
	Folie 61: Results Scatter estimates for simulated testing data
	Folie 62: Results CT reconstructions of scatter corrected testing data
	Folie 63: Application to Measured Data
	Folie 64: Results Performance of DSE for measured data
	Folie 65: Truncated DSE
	Folie 66: DSE for Cross-Scatter Correction (xDSE)
	Folie 67: DSE for Coarse ASG
	Folie 68: Conclusions on DSE
	Folie 69: uDSE – Basis Principle
	Folie 72: Results  Scatter Estimates
	Folie 73: Results CT Reconstructions
	Folie 75: Summary on AI for CT Image Formation
	Folie 76: Thank You!

