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PHOTON-COUNTING CT
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Sensor

material

Detector

pixel size at iso

Pixel

binning
FOM Bins FDA Pubs Installations

Canon CdZnTe 210 µm 3×3, 1×1 50 cm 5 no 1
1 prototype

(Japan)

GE Si, edge on 400 × 400 µm ? ? ? no
1 experimental (Sweden),

2 prototypes (USA)

Philips CdZnTe 1  274 × 274 µm ? 50 cm 5 no 22
1 experimental setup

(France)

Samsung

Omnitom 

Elite

CdTe

703 × 707 µm

/ 351 × 423 µm

/ 117 × 141 µm

5×6, 

3×3, 1×1
30 cm 3 yes 1 ?

Siemens

CounT

GOS/CdTe

dual source

1  700 × 600 µm

1 / 250 × 250 µm
2×2, 1×1 50 / 28 cm 4 no 50

3 experimental systems

(Germany, USA)

Siemens

CountPlus
CdTe 1  150 × 176 µm 2×2, 1×1 50 cm 4 no 11

3 prototypes

(Czech, Sweden, USA)

Siemens

Alpha

CdTe/CdTe

dual source
2  150 × 176 µm 2×2, 1×1 50 / 36 cm 4 yes 40 about 100 worldwide

Availability of
Diagnostic Photon-Counting CT

The additional factor 2 in the detector pixel size column indicates that some scan modes may use binning.

Edge on design (Si only)

Face on design (all others)
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Image courtesy of Siemens Healthineers
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Diagnostic CT (Conventional Detector) 
of a Low Contrast Phantom

Photon Counting Detector CT 
of a Low Contrast Phantom

Photon Counting Detector
Phantom

C = 0 HU, W = 80 HU 

Same dose. At same spatial resolution 
(MTF) better image quality.

Diagnostic routine head protocol. 
34 mGy CTDIvol.

EI PC
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Gd2O2S
7.44 g/cm3

CdTe
5.85 g/cm3
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i.e. max O(40∙106) cpsi.e. max O(40∙103) cps

Requirements for CT: up to 109 x-ray photon counts per second per mm2.
Hence, photon counting only achievable for direct converters.
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Energy-Selective Detectors:
Improved Spectroscopy, Reduced Dose?

Spectra as seen with 4 bins after having passed a 32 cm water layer.

Ideally, bin spectra do not overlap, …
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Energy-Selective Detectors:
Improved Spectroscopy, Reduced Dose?

… realistically, however, they do! 

Spectra as seen with 4 bins after having passed a 32 cm water layer.
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Photon Events

+
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5.85 g/cm3
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• Detection process in the sensor

• Photoelectric effect (e.g. 80 keV)
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Photon Events
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5.85 g/cm3
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• Detection process in the sensor

• Compton scattering or K-fluorescence (e.g. 80 keV)

E

1

2

3

4

1 2 1 2

T
h

re
s
h

o
ld

Energy dispersion due to 
secondary photons
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Photon Events

CdTe
5.85 g/cm3
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• Detection process in the sensor

• Photoelectric effect (e.g. 30 keV), charge sharing

Energy dispersion due to 
charge diffusion
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No Electronic Noise!

• Photon counting detectors have no 
electronic noise.

• Extreme low dose situations will benefit
– Pediadric scans at even lower dose

– Obese patients with less noise

– Industrial CT with very long exposure times per frame

– … PC (Dectris)

EI (Dexela)

18 frames, 5 min integration time per frame, x-ray off

No readout noise. Single events visible!

Readout noise only. Single events hidden!
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Siemens Naeotom Alpha
The World‘s First Photon-Counting CT

Alpha PCCT at University Medical Center Mannheim (UMM), Heidelberg University, Germany

PC

PC

• Tubes
– tube A: 120 kW

– tube B: 120 kW

– Focal spot size down to 181 µm

• Detectors 
– pixel size down to 150 µm

– 288 detector rows

– 2752 detector columns

• Speed
– up to 4 rotations per second

– up to 737 mm/s scan speed

• 50 cm FOM

 ¼ MW
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12
34

1234

Alpha (Quantum Plus)
1376 × 144 macro pixels

pixel size 0.3 × 0.352 mm at iso
avg. sampling 0.344 × 0.4 mm at iso

57.6 mm z-coverage

Alpha (UHR)
2752 × 120 pixels

pixel size 0.151 × 0.176 mm at iso
avg. sampling 0.172 × 0.2 mm at iso

24 mm z-coverage

Detector Pixel Force vs. Alpha

z



Force
920 × 96 detector pixels

pixel size 0.52 × 0.56 mm at iso
avg. sampling 0.56 × 0.6 mm at iso

57.6 mm z-coverage

Focus sizes (Vectron): 0.181×0.226 mm, 0.271×0.7316 mm, 0.362×0.497 mm at iso
which are 0.4×0.5 mm, 0.6×0.7 mm, 0.8×1.1 mm at focal spot
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1234 1234

1234 1234

ASG information taken from [J. Ferda et al. Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience. 
European Journal of Radiology 137:109614, 2021]

EI

EI
ASG
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Noise

ResolutionHigh Medium Low Very Low0

Small detector pixels

Large detector pixels

Less noise with small pixels at the same
spatial resolution (e.g. B70f)

Better spatial resolution with small
pixels at the same noise (e.g. 25 HU)

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005 

150 HU

300 HU

The “Small Pixel Effect” 

This nice phrase
was coined 

by Prof. Norbert Pelc, 
Stanford University.

or “To Bin or not to Bin?”



EI
B70f

UHR
B70f

Macro
B70f

UHR
U80f

± 62 HU ± 158 HU

± 89 HU ± 77 HU

All images taken at the same dose at Somatom CounT.
C = 1000 HU, W = 3500 HU

10 mm

25% dose reduction
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Photon Counting used to Maximize CNR

• With PC, energy bin sinograms can be weighted individually, i.e. by 
a weighted summation.

• To optimize the CNR the optimal bin weighting factor
wb is given by (weighting after log):

• The resulting CNR is

• At the optimum this evaluates to

The two ROIs are used to measure the CNR.

Faby, Kachelrieß et al., MedPhys 42(7):4349-4366, July 2015.
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Material Decomposition or CNR Maximization?

• W = soft tissue (water) signal, X = iodine signal

• Assume same noise N, e.g. 50 HU,  in both bin measurements M1 and M2

– Var M1 = Var M2 = N2 regardless of whether iodine is present or not

• PCCT measurement

– Measurement 1 (high bin): M1 = W + 0.25 X CNR2 =   X2 / 16 N2

– Measurement 2 (low bin): M2 = W + 0.5 X CNR2 =   X2 /   4 N2

• Material decomposition

– Estimated iodine: 4 (M2 – M1) Variance = 16 (Var M2 + Var M1) = 32 N2 SNR2 =  X2 / 32 N2

– Estimated soft tissue:         2 M1 – M2 Variance = 4 Var M1 + Var M2 = 5 N2 SNR2 = W2 /   5 N2

• CNR maximization

– Compute (1 - w) M1 + w M2 Variance = (1 - w)2 N2 + w2 N2 = (1 - 2 w + 2 w2) N2

– Iodine value minus soft tissue value      = Contrast = (1 - w) 0.25 X + w 0.5 X

– Maximizing CNR yields w = 2/3 CNR2 = 5 X2 / 16 N2

This simple toy example assumes iodine to contribute half as much to the gray value for the high bin as for the low bin.
CNR refers to the contrast between iodine and soft tissue. SNR refers to the contrast between the decomposed material and air.
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Linear Mixing Techniques

C = 300 HU, W = 1400 HU



-2 5

-2 5

0 1

0 1

 = 1 = 0

Original low spectrum 
image

Original high spectrum 
image
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Summary on PCCT

• Higher efficiency
– better image quality 

– reduced measurement times

• No electronic noise
– very long exposures possible

– potential to overcome photon starvation

• Spectral information on demand
– material discrimination

– artifact reduction

– combination with DECT acquisition possible and reasonable

• High frame rates also for off-the-shelve PC detectors
– can be of interest for inspection tasks
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ARTIFICIAL INTELLIGENCE
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Deep RAR Examples



Deep Detruncation



Deep MAR Examples



Deep MAR Examples
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Sparse View Restoration Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.



Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…
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Component-Specific Denoising/Desparsifying

• We assume to have one long-acquisition scan of the component

• Generate training data via random transformations and deformations

• Generate datasets for training, validation and :
– GT: Long-acquisition ground truth

– UN: undersampled + noise reconstruction (80 projections, Poisson noise)

– N: Noisy reconstruction (800 projections, with Poisson noise)

• Train three U-Nets
– Sh-Unet-MSE: Shallow structure (3× downsampling, initial filter size: 16) with MSE

– Unet-MSE: Deeper structure (4× downsampling, initial filter size: 16) with MSE

– Unet-Adv: Deeper structure trained in WGAN-GP setting with perceptual and MSE 
component

• All networks are trained on patches of size 2562 on the UN dataset
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Results
Test Data (UN) ⋅ Sh-Unet-MSE

Input

Prediction

GT
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Ground Truth

Sparse input
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Shallow Unet

Sparse input
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Deep Unet

Sparse input
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Deep Adversarial Unet

Sparse input



Simulation-based 
artifact correction

Standard 
reconstruction

J. Maier, M. Kachelrieß et al. Simulation-based artifact correction (SBAC) for 
metrological computed tomography. Meas. Sci. Technol. 28(6):065011, May 2017.

Simulation-based removal of
• beam hardening artifacts
• off-focal radiation artifacts
• focal spot blurring artifacts
• detector blurring artifacts

• scatter artifacts
• …
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Deep Scatter Estimation (DSE)

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Monte Carlo Scatter Estimation

• Simulation of photon trajectories according to physical interaction 
probabilities.

• Simulating a large number of photon trajectories well approximates 
the actual scatter distribution.

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator
Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Simulation Study: Training Data

• Simulation of 16416 projections using different objects and parameter settings to 
train the DSE network.

• Training on a GeForce GTX 1080 for 80 epochs using the Keras framework, an 
Adam optimizer and a mini-batch size of 16.

Poisson noise

MC scatter 

Tube 
Voltage:
225 kV, 
275 kV, 
320 kV 

Tilt angle:

0° 30° 60° 90°

Compressor
(Titanium

alloy)

Cylinder 
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin 
Prefilter:
1.0 mm, 
2.0 mm

Isocenter-detector-distance
400 mm, 500 mm, 600 mm  

Scaling (size)
0.8, 1.2

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Simulation Study: Testing Data

• Simulation of a tomography (720 projection / 360°) of five components using 
acquisition parameters that differ from the ones used to generate the training data 
set.

Poisson noise

MC scatter 

Tube 
Voltage:
250 kV

Tilt angle:

15°

Compressor
(Titanium

alloy)

Cylinder 
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin 
Prefilter:
1.5 mm

Isocenter-detector-distance
550 mm

Scaling (size)
1.0

Profile
(Aluminum)

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results
Scatter estimates for simulated testing data

Scatter ground 

truth (GT)
Primary 

intensity

|Kernel - GT| 

/ GT 

|Hybrid - GT| 

/ GT

|DSE - GT| 

/ GT

C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.015, W = 0.020 C = 0%, W = 50%C = 0%, W = 50%

Model

13%
mean 

absolute
percentage 

error
over
3600

projections

7%
mean 

absolute
percentage 

error
over
3600

projections

1%
mean 

absolute
percentage 

error
over
3600

projections
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Scatter free  (GT) Kernel-based - GT Hybrid - GT DSE - GTNo correction No correction - GT

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

Results
CT reconstructions of scatter corrected testing data
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Application to Measured Data

• Measurement at DKFZ table-top CT

• Tomography of aluminum profile

• 720 projections, 360°

• 110 kV Hamamatsu micro-focus tube

• Varian flat detector 

Training Testing

Components

Detector elements 768×768 768×768

Source-detector distance 580 mm 580 mm

Source-isocenter distance 100 mm, 110 mm, 120 mm 110 mm

Tilt angle 0°, 30°, 60°, 90° 0°

Tube voltage 100 kV, 110 kV, 120 kV 110 kV

Copper prefilter 1.0 mm, 2.0 mm 2.0 mm

Scaling 1.0 -

Number of projections 8208 720
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Results
Performance of DSE for measured data

Reconstructions

MC scatter |Kernel-based - MC| / MC |Hybrid - MC| / MC |DSE - GT| / MC

C = 0%, W = 50%C = 0%, W = 50%C = 0.04, W = 0.06 C = 0%, W = 50%

Component

Projection data

Monte Carlo  (GT) Kernel-based Hybrid DSENo correction
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12.6% MAPE
(720 projections)

5.4% MAPE
(720 projections)

2.5% MAPE
(720 projections)
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Truncated DSE

FOM

FOM

Ground  truth Uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Uncorrected xDSE (2D, xSSE)

MAE = 4.9 HUMAE = 42.6 HU

Ground Truth

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU 

J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based forward 
and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.

DSE for Cross-Scatter Correction (xDSE)
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1234

Coarse ASG
Naeotom Alpha

1376 × 144 macro pixels
pixel size 0.3 × 0.352 mm at iso

DSE for Coarse ASG

1234

1234 1234

1234 1234

ASG

J. Erath, M. Kachelrieß et al. CT-Meeting 2022. This paper received the “Highest Impact Paper Award” for the highest impact score at the 7th 
International Conference on Image Formation in X-Ray Computed Tomography in June 2022

Primary 
photon

Scattered 
photons

Coarse ASGs lead to 
changing scatter 
intensity between 

neighboring pixels. 
With coarse DSE

With standard DSE
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Conclusions on DSE

• DSE needs about 1 ms per projection.

• DSE is a fast and accurate alternative to MC simulations.

• DSE outperforms other approaches in terms of accuracy and speed.

• Facts:
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE generalizes well to different geometries, scanners and objects.

– DSE variants for cross-scatter and coarse ASG scatter prediction are available.

– DSE may outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter estimates. 

• DSE can rather be trained with any other scatter estimate, including 
those based on measurements.

• DSE can also be used to simulate scatter (at somewhat lower accuracy).

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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uDSE – Basis Principle

Input: CT scan 
(intensities I)

DSE
uDSE

Output: Scatter 
distribution S

Scatter correction
Icorr = I - S

Log transform
pcorr = -log(Icorr)

CT reconstruction
fcorr = X-1 pcorr

Te
n
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w
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rs

Clinical CT images ("real”)

“Fake” images

Discriminator / critic network

WGAN
LOSS
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Results 
Scatter Estimates

Primary + scatter (input) Ground truth DSE scatter prediction uDSE scatter prediction

Er
ro

r 
w

.r.
t.
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C = 0 %, W = 40 % C = 0 %, W = 40 % C = 0 %, W = 40 %

C = 0.007, W = 0.007 C = 0.007, W = 0.007 C = 0.007, W = 0.007C = 0.06, W = 0.12
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Results
CT Reconstructions
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Ground truth No correction DSE correction uDSE correction

C = 200 HU, W = 700 HU C = 200 HU, W = 700 HU C = 200 HU, W = 700 HUC = 200 HU, W = 700 HU

C = 0 HU, W = 500 HU C = 0 HU, W = 500 HU C = 0 HU, W = 500 HUC = 0 HU, W = 500 HU
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Summary on AI for CT Image Formation

• Powerful tool that allows to solve yet unsolved problems
– Underdetermined situations, where AI brings in prior knowledge

– Computational demanding problems, where AI reduces the compute time

–

• Results have to be taken with care
– Images often look great, but are they true?

– Utilizing too much prior knowledge will result in fake content

– Proves do not exist, the networks‘ output cannot be eplained

–

• Vendors may tend to overemphasize the benefits from AI
– Sale by nice looking images
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Thank You!
• This presentation will soon be 

available at www.dkfz.de/ct.

• Job opportunities through DKFZ’s 
international PhD or Postdoctoral 
Fellowship programs 
(marc.kachelriess@dkfz.de). 

• Parts of the reconstruction 
software were provided by 
RayConStruct® GmbH, Nürnberg, 
Germany.

www.ct-meeting.org
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