Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

“Lightning protectors” protect cells from oxidative damage

No. 08c | 08/02/2018 | by Eze/Koh

Scientists from the German Cancer Research Center (DKFZ) have been able to unravel how acetylcysteine, a well-known agent used as a cough medication, can protect cells from oxidative stress. In the cell, the substance is rapidly transformed into so-called persulfides. These sulfur compounds unfold their protective effect on the cell by diverting oxidation very efficiently towards themselves, similar to a lightning protector.

© Tobias Dick/DKFZ

Acetylcysteine (also known as N-acetyl cysteine, or NAC) is a well-known non-prescription cough medicine available in any pharmacy. Another, less widely known use of this agent is as an antidote in the treatment of paracetamol (acetaminophen) overdose, which can lead to severe liver damage. If given in time in these cases, acetylcysteine can prevent the worst damage from happening.

Acetylcysteine is generally credited to have cell protection and antioxidative effects, which has been confirmed in numerous experiments. Acetylcysteine reduces the level of endogenous cellular oxidants and lessens the toxic effect of oxidizing exogenous substances. Therefore, acetylcysteine is one of the most commonly used antioxidants in experimental biomedical research.

However, little has been understood so far about exactly how acetylcysteine unfolds its antioxidative effect. A previous hypothesis saying that its effect is based on a direct reaction with oxidants has not been confirmed. Even though acetylcysteine is so widely used, the mechanisms behind its mode of action have remained largely in the dark.

Researchers at the DKFZ have now found a completely new explanation for acetylcysteine’s antioxidative and cell protection effect. In their study, the investigators traced the breakdown of the compound in human cells and noticed that acetylcysteine is converted into hydrogen sulfide. Hydrogen sulfide is known to be a very toxic gas, but it is also known by now that endogenous hydrogen sulfide fulfills physiological functions.

In fact, levels of hydrogen sulfide produced from acetylcysteine do not become toxic, because it is swiftly transformed into another type of sulfur compounds called persulfides. Their function in the cell is largely unknown to date. The findings by the DKFZ researchers suggest that persulfides are the true antioxidative agents. Treatment of cells with synthetic persulfides mimicked the antioxidative effects of acetylcysteine, even at substantially lower levels. “Persulfides bind to proteins and protect them, presumably by diverting oxidation towards themselves, similar to a lightning protector,” said DKFZ’s Tobias Dick, who has led the study.

“We now understand much better how acetylcysteine can protect cells from oxidative stress,” said Daria Ezerina, PhD student and first author of the study. “But this should not lead one to conclude that it would be a good idea to take acetylcysteine as a dietary supplement long-term and at high doses. Because tumor cells under stress might also benefit from this cell protection.” A couple of years ago, cancer researchers in Sweden already showed that long-term administration of acetylcysteine can promote tumor growth and metastasis in mice.

Ezerina D, Takano Y, Hanaoka K, Urano Y, Dick TP (2018) N-acetyl cysteine functions as a fast-acting antioxidant by triggering intracellular H2S and sulfane sulfur production.
Cell Chemical Biology, doi:10.1016/j.chembiol.2018.01.011

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS