Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

A new tool for detecting and destroying norovirus

No. 12 | 06/03/2015 | by TS

Norovirus infection is the most common cause of viral gastroenteritis, or “stomach flu.” A research team at the German Cancer Research Center (DKFZ) recently produced “nanobodies” that could be used to better characterize the structural makeup of the virus. They discovered that these nanobodies could detect the virus in clinical stool samples and disassemble intact norovirus particles. Such nanobodies may potentially be used to not only better detect but also treat symptoms of norovirus infection in the clinic.

Electron micrograph of norovirus virus-like particles (VLPs) and a cartoon representation of a nanobody, termed Nano-85 (orange). Nano-85 binds to the VLPs and causes the VLPs to disassemble.
© Dr. Grant Hansman, DKFZ

Infection with highly contagious noroviruses, while not usually fatal, can lead to a slew of unpleasant symptoms such as excessive vomiting and diarrhea. Current treatment options are limited to rehydration of the patient. "Additionally, noroviruses come in a variety of constantly evolving strains. This makes the development of an effective vaccine to protect against infection, as well as antiviral therapy to combat already-existing infections, particularly challenging", says Dr. Grant Hansman, a virologist who leads the CHS Research Group on Noroviruses at the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and Heidelberg University.

Hansman’s research team recently discovered that a “nanobody” called Nano-85 was able to bind to intact norovirus-like particles (VLPs) in culture. Nanobodies are very similar to antibodies, which recognize and bind to antigens. “However, nanobodies are much smaller, more stable, easier to produce, and cost-effective than traditional monoclonal antibodies,” says Hansman. Interestingly, Nano-85 was able to recognize the VLPs from a variety of different norovirus strains.

The researchers then tested the nanobody on stool samples from patients infected with the virus. In this context, Nano-85 was able to detect virus in one-third of the samples already known to be positive for noroviral RNA. “Because noroviruses are changing all the time, there is a need for more powerful tools to detect emerging noroviruses. We still need to optimize detection using Nano-85, but we hope that it could potentially be used as a diagnostic tool further on down the road,” explains Hansman.

In solution, Nano-85 was also able to bind to a specific portion of the VLP known as the protruding (P) domain. As with the VLPs, Nano-85 recognized the P domains from a variety of strains. Hansman describes the P domain as a structure that “essentially sticks out like a spike from the virus. Therefore, it has some degree of flexibility – like grass on a hill on a windy day. This ability to change shape likely allows the virus to evade recognition by the immune system – but could also make it more vulnerable to attack.”

Using a technique called X-ray crystallography, the researchers were able to determine the shape and molecular components of the Nano-85/P domain complex, as well as specific sites where Nano-85 and the P domain formed bonds. According to Hansman, “this is, as far as we know, the first instance in which the molecular structure of a nanobody-P domain complex has been determined for norovirus.”

Interestingly, the investigators found that the site where Nano-85 bound to the P domain was actually hidden under the viral particle’s surface. “From the virus’s point of view, this could be a strategy to keep potentially vulnerable sites protected from attack,” explains Hansman. However, when they tried to create high-magnification images of the interaction using electron microscopy, they were surprised that they could not find any intact VLPs. This led them to believe that Nano-85 itself was actually causing the VLPs to break apart.

In describing the significance of these findings, Hansman says: “If Nano-85 is indeed causing intact VLPs to disassemble, this could be a very promising lead in developing norovirus antiviral therapy. This could be especially beneficial to immunosuppressed individuals such as cancer patients. Administering a vaccine to protect against infection would overwhelm the patient’s immune system. However, if he or she has the option of receiving an antiviral to eliminate the infection, the norovirus becomes much less dangerous.”

Anna D Koromyslova and Grant S Hansman: A nanobody binding to a conserved epitope promotes norovirus disassembly. Journal of Virology 2015, DOI:10.1128/JVI.03176-14

A picture for this press release is available at:
www.dkfz.de/de/presse/pressemitteilungen/2015/bilder/Hansman_image.jpg

Caption: Electron micrograph of norovirus virus-like particles (VLPs) and a cartoon representation of a nanobody, termed Nano-85 (orange). Nano-85 binds to the VLPs and causes the VLPs to disassemble.
Source: Dr. Grant Hansman, DKFZ 

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS