Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

A yardstick to measure the malignancy of prostate cancer

No. 63 | 08/12/2014 | by Koh

A protein that influences the epigenetic characteristics of tumor cells is directly linked to the grade of malignancy of prostate cancer. This key discovery has been made by a team of scientists from the German Cancer Research Center (DKFZ), the University of Zurich, Hamburg-Eppendorf University Hospital, Heidelberg University, and other institutes in a study of 7,700 samples of tumor tissue. The detection of this biomarker may serve as an indicator of the likelihood that the disease may take an aggressive course, and may thus be helpful in choosing an appropriate treatment. The study was part of the “Early Onset Prostate Cancer” project, supported by the Federal Ministry of Education and Research (BMBF) as part of the International Cancer Genome Consortium (ICGC).

Picture: Wikimedia Commons

When cancer is diagnosed, the grade of its malignancy is a central concern for both patients and their physicians. This value is used to determine how intensively and how radically the cancer must be treated. Particularly in the case of prostate cancer, the disease can take widely varying courses in different patients. Therefore, cancer researchers have been looking for measurable, reliable biomarkers that give clues about the aggressiveness of a tumor in order to choose an appropriate therapy.

In many types of cancer, alterations in a tumor’s genetic material indicate how dangerous the cancer is. Prostate cancer, however, exhibits far fewer of these mutations than other cancer types. “We have therefore suspected that prostate cancer is driven primarily by alterations in epigenetic characteristics, that is, chemical changes in the genetic material that do not affect the sequence of DNA building blocks,” says Prof. Christoph Plass from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), who is one of the project leaders in the current publication.

For a long time, the means by which epigenetic patterns in the DNA of cancer cells undergo changes have remained a mystery. Scientists have discovered specific cellular proteins that can have a major influence on such patterns. A network of researchers from the German Cancer Research Center (DKFZ), the University of Zurich, Hamburg-Eppendorf University Hospital, Heidelberg University, and other institutes have been searching for regulatory proteins that change the epigenetic characteristics of prostate cancer cells and may thus have an impact on the course of the disease.

In a first step, the scientists searched databases containing molecular information on a large number of prostate cancer cases. Using these data, they investigated whether a particular, known epigenetic regulatory protein is expressed in tumor cells at significantly higher or lower levels than in healthy cells from the same patient.

The researchers found the most obvious differences in the expression of a protein called BAZ2A. “The normal known function of this protein is to suppress factories that produce cellular proteins and thus affect the viability of cells,” says Prof. Roland Eils, who leads a research group at both the DKFZ and at Heidelberg University. “But when we turned off BAZ2A in the cell lines of metastasizing prostate cancer, their growth was paradoxically slowed.” Further studies showed that higher levels of BAZ2A increased specific malignant properties of prostate cancer cells, including their mobility and capacity to invade surrounding tissue.

A detailed molecular analysis of prostate cancer cells showed that the overproduction of BAZ2A led to alterations in epigenetic patterns which then inhibited the activity of a number of cancer-suppressing genes. The scientists therefore suspected that the overexpression of BAZ2A might have a direct impact on the malignancy of prostate cancer and thus serve as a predictor for the course of the disease.

The team investigated this hypothesis using nearly 7,700 tissue samples obtained from prostate cancer patients. They discovered that the higher the BAZ2A levels in the tissue were, the more advanced the tumor was at the time of diagnosis, the more frequently it had already spread and formed metastases, and the higher patients’ PSA levels were.

“BAZ2A seems to have a direct influence on the aggressiveness of prostate cancer,” Plass says. “This suggests that levels of BAZ2A expression may serve as a valuable predictor of disease progression. Of course, this still needs to be clinically confirmed. Particularly in patients whose other clinical results indicate a medium risk, BAZ2A expression may provide important clues for the actual chances of recurrence. This would help physicians and patients choose the most promising treatment.

The study is part of the International Cancer Genome Consortium (ICGC). Collaborators in the project “Early Onset Prostate Cancer” are the Martini-Klinik and Hamburg-Eppendorf University Hospital, EMBL, DKFZ, the National Center for Tumor Diseases (NCT) Heidelberg, and the Max Planck Institute for Molecular Genetics in Berlin. The project coordinators are Prof. Christoph Plass from the DKFZ and Prof. Guido Sauter from Hamburg-Eppendorf University Hospital. The Federal Ministry of Education and Research (BMBF) has provided funds of €7.5 million for the project.

Lei Gu, Sandra C Frommel, Christopher C Oakes, Ronald Simon, Katharina Grupp, Cristina Y Gerig, Dominik Bär, Mark D Robinson, Constance Baer, Melanie Weiss, Zuguang Gu, Matthieu Schapira, Ruprecht Kuner, Holger Sültmann, Maurizio Provenzano, ICGC Project on Early Onset Prostate Cancer, Marie-Laure Yaspo, Benedikt Brors, Jan Korbel, Thorsten Schlomm, Guido Sauter, Roland Eils, Christoph Plass und Raffaella Santoro: BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its overexpression predicts disease recurrence.
Nature Genetics 2014, DOI: 10.1038/ng.3165

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS