Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Preventive Detention for Oxidizing Agents

Role of oxidative stress needs to be re-evaluated

No. 66 | 17/12/2012 | by Koh

Oxidative stress is believed to cause a number of diseases. Up to now, it has been common practice to measure oxidative stress levels by determining the oxidation state of a small molecule called glutathione in cell extracts. Scientists from the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have been the first to discover that cells under stress deposit their oxidized glutathione in a cellular waste repository. This protects cells from oxidative stress – and questions the validity of the conventional measuring method.

A biosensor tracks oxidized glutathione in the vacuole of yeast cells.
© Tobias Dick, German Cancer Research Center

Cancer, Alzheimer’s, arteriosclerosis– the list of diseases which have been linked to oxidative stress is long and even includes the very process of aging. Oxidative stress is caused by so-called reactive oxygen compounds, which include the notorious “free radicals”. If a cell is exposed to more reactive oxygen compounds than it can instantly degrade, it is under oxidative stress. As a result, important components such as proteins, DNA and lipids are oxidized and thus get damaged.

To determine whether a cell is under oxidative stress, scientists often analyze the oxidation state of glutathione. Glutathione is a small molecule which gets oxidized to protect the cell from reactive oxygen compounds. In theory, the amount of oxidized glutathione should therefore indicate whether a cell is healthy or under oxidative stress. However, researchers in the team of Associate Professor (PD) Dr. Tobias Dick have demonstrated that this hypothesis, which is the basis of a large number of scientific studies, is deceptive.

“Up to now, it was necessary to destroy the cells in order to measure the amount of oxidized glutathione,” Tobias Dick explains. “However, this means that any spatial resolution is lost.” Therefore, virtually nothing was known about where exactly oxidized glutathione is found in the cells. Scientists have presumed that it remains in the cytoplasm, where it is formed.

To find out more about the whereabouts of glutathione in the cell, Tobias Dick and co-workers developed biosensors which indicate the oxidation state of glutathione in intact cells by releasing light signals. In yeast cells, the researchers were able, for the first time, to follow the path of oxidized glutathione through the living cell in real time. They were surprised to find that, rather than remaining in the cytoplasm, it promptly gets locked up in a safe depot, the vacuole.

The cytoplasm, where all important cellular metabolic processes happen, is thus reliably protected from oxidative damage. Cells that would have been considered to be under oxidative stress using the conventional method appeared entirely healthy in their cytoplasm. Tobias Dick and his team could subsequently show that this is not only true for yeast cells but also for various mammalian cells and also for cancer cells.

These results mean that – contrary to previously held beliefs – the level of oxidative glutathione does not indicate whether or not a cell is under oxidative stress. “Therefore, it is important to re-evaluate prior studies that have established a link between oxidative stress and various diseases based on the conventional method.”

A picture for this press release is available at:
http://www.dkfz.de/de/presse/pressemitteilungen/2012/images/66-hefe-wt1.jpg

Picture caption: A biosensor tracks oxidized glutathione in the vacuole of yeast cells.

Source: Tobias Dick, German Cancer Research Center

Bruce Morgan, Daria Ezeriņa, Theresa N.E. Amoako, Jan Riemer, Matthias Seedorf and Tobias P. Dick: Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nature Chemical Biology 2012, DOI: 10.1038/NCHEMBIO.1142

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS