Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Alternate ending – living on without telomerase

No. 58 | 03/11/2011 | by Koh

Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have discovered an alternative mechanism for the extension of the telomere repeat sequence by DNA repair enzymes.

In some cancer cells, APB complexes (yellow) induce the extension of the telomere repeats (red).
© dkfz.de

The ends of the chromosomes, the telomeres, are repetitive DNA sequences that shorten every time a cell divides during the process of duplicating its genome. Once the telomeres become very short the cell stops dividing. Thus, telomeres work like a cellular clock that keeps an eye on the number of cell divisions. And once the cell’s time is over it can no longer divide. Circumventing this control mechanism is crucial for tumor cells in order to proliferate without limits. In the majority of tumors this is accomplished by reactivating telomerase, an enzyme that normally extends the telomeres only in embryonic cells, and thus resets the cellular clock during development. However, a 10-15% fraction of tumors keeps on dividing without telomerase by making use of what is called the ALT-mechanism for “Alternative Lengthening of Telomeres”. The hallmark of ALT cancer cells is a special type of complexes of promyelocytic leukemia (PML) protein at the telomeres that are termed ALT-associated PML nuclear bodies or APBs.

ALT-tumors can be identified by the presence of APBs on fluorescence microscopy images since normal cells do not have these structures. However, the function of APBs has remained mysterious. In a recent study, Inn Chung and Karsten Rippe from the German Cancer Research Center together with Heinrich Leonhard from the LMU in Munich applied a novel approach to study APBs. They succeeded in artificially making APBs in living cells by tethering PML and other APB proteins to the telomeres. In this manner they could not only trace the assembly of APBs but were able to investigate what happens after APB formation. They could show that the de novo formed APBs induced the extension of the telomere repeat sequence by a DNA repair synthesis mechanism. This demonstrates for the first time that APBs have an important function for the alternative telomere lengthening mechanism, and suggests that disrupting APBs would stop proliferation of ALT-positive tumor cells once their telomeres become too short. This makes APBs a promising new target of cancer cells, in which the ALT mechanism is active.

Publication: Chung, I., Leonhardt, H. & Rippe, K. (2011). De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J. Cell Sci., doi: 10.1242/jcs.084681.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS