Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Stop Signal for Leukemia Stem Cells

No. 44 | 15/08/2011 | by (Koh)

An international team comprising cancer researchers from various institutes including the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) has discovered that hyperactive signaling of a particular growth factor called IGF1 promotes T-cell acute lymphoblastic lymphoma (T-ALL). When the investigators blocked this factor, blood cancer cells ceased to growth further. Moreover, the cancer stem cells, which are particularly dangerous, lost their capability to self-renew. Inhibitors of this growth factor are already available and might help to enhance treatment of this type of leukemia and prevent recurrence.

Bone marrow smear of T-cell acute lymphoblastic leukemia

Bone marrow smear of T-cell acute lymphoblastic leukemia
© Hind Medyouf, German Cancer Research Center

There are numerous specialized growth factors that are responsible for cells of different tissues of our body to divide and differentiate when needed. These hormone-like factors bind to matching receptors on the surface of their target cells and thus give order for the cell to divide. However, a single genetic alteration can be sufficient for the whole system to get out of control. If, for example, the gene for such a growth factor or for the matching receptor is hyperactive, then the cell permanently receives signals to divide – and this can result in cancer.

Such defective growth signals play a role in many cancers. Thus, breast cancer cells in about 20 percent of affected women form too many receptors for the Her2/neu growth factor; in bowel cancer doctors frequently find an overproduction of the EGF growth factor.

Jointly with colleagues from France, Canada and the U.S., scientists headed by Professor Dr. Andreas Trumpp of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now discovered that in T-cell acute lymphoblastic leukemia (T-ALL), too, malignant growth is driven by a particular growth factor. In this case, it is the insulin-like growth factor 1 (IGF1) which plays the key role.

The investigators found out that there is an oversupply of IGF1 receptors in T-ALL. The leukemia cells therefore become particularly sensitive to IGF1 signals. When the researchers blocked the IGF1 receptors using specific inhibitors or turned off the gene coding for the receptor, the blood cancer cells ceased to grow. This worked both in murine cancer cells and in human leukemia cells.

However, blockage of the IGF1 signal not only stopped cancer cell growth. Moreover, the dangerous cancer stem cells lost their capability of self-renewal. This was shown by the investigators in a classic experiment called serial transplantation. They transplanted T-ALL cells that formed only small amounts of IGF1 receptors on their surface into mice. Although T-ALL cells normally always cause leukemia in recipient animals, only very few mice developed leukemia after injection of the modified T-ALL. For the team this was the most important clue that leukemia stem cells were either absent or no longer active, because they are the only ones that can initiate leukemia.

“We only need to reduce the level of IGF1 receptors slightly in order to deprive cancer stem cells of their self-renewal capacity. Apparently, leukemia stem cells are particularly dependent on strong IGF1 signals,” explained Dr. Hind Medyouf, first author of the article.

Acute lymphoblastic leukemias are the most frequent malignancies in children; however, elderly adults may be affected, too. The group’s results open up new prospects for treatment, because substances inhibiting the IGF1 receptor are already available and are currently being tested for other types of cancers such as breast cancer in clinical trials. Andreas Trumpp, a stem cell specialist, explains: „Elderly T-ALL patients have a particularly high recurrence rate after seemingly successful chemotherapy. Inhibition of the IGF1 signaling pathway would target the leukemia stem cells in particular and might therefore prevent recurrence of the cancer.”

Hind Medyouf, Samuel Gusscott, Hongfang Wang, Carol Wai, Oksana Nemirovsky, Andreas Trumpp, Francoise Pflumio, Joan Carboni, Marco Gottardis, Michael Pollak, Jon C. Aster, Martin Holzenberger and Andrew P. Weng: High level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signalling.Journal of Experimental Medicine, 2011, DOI:10.1084/jem.20110121

A picture for this press release is available on the Internet at:
www.dkfz.de/de/presse/pressemitteilungen/2011/images/T-ALL-BM.jpg

Caption: Bone marrow smear of T-cell acute lymphoblastic leukemia. Source: Hind Medyouf, German Cancer Research Center

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS