Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Mit Licht die Zelle steuern

Nr. 36 | 21.07.2014 | von Sel

Forscher der Universität Heidelberg und des Deutschen Krebsforschungszentrums (DKFZ) haben eine neue Methode entwickelt, mit der sie Prozesse in lebenden Zellen über Lichtsignale steuern können. Dieses System ermöglicht Studien über die Bewegung von Proteinen innerhalb der Zelle und ist daher sowohl für die Grundlagen- als auch für die angewandte Forschung interessant. Ihre Ergebnisse haben die Wissenschaftler jetzt in der Fachzeitschrift Nature Communications veröffentlicht.
Gemeinsame Pressemitteilung von Deutsches Krebsforschungszentrum (DKFZ) und Universität Heidelberg

LINuS vermittelt die Licht-gesteuerte Wanderung des rot gefärbten Proteins in den Zellkern einer menschlichen Nierenzelle.
© dkfz.de

Das neue System heißt wie der Gefährte des Zeichentrickhundes Snoopy: LINuS steht für „light-inducible nuclear localization signal“, also ein durch Licht induzierbares Signal, mit dem Proteine in den Zellkern gelenkt werden können. Die Besonderheit der neuen Methode ist, dass die Forscher über Licht direkt in die Prozesse lebender Zellen eingreifen können. Die Vorteile liegen klar auf der Hand: So, wie man Licht ein- und ausschalten kann, so kann auch LINuS ein- und wieder ausgeschaltet werden – und das gleich mehrmals hintereinander. Darüber hinaus hinterlässt es keine anderen Spuren in der Zelle, die wissenschaftliche Beobachtungen beeinflussen könnten. Gegenüber der Steuerung durch chemische Signale eröffnet LINuS zudem die Möglichkeit, gezielt einzelne Zellen aus einem Zellverband zu untersuchen. Da LINuS über eine kurze DNA-Sequenz an jedes beliebige Protein angehängt werden kann, stellt es ein universell einsetzbares Mittel dar, um verschiedenste Prozesse in Säuger- und Hefezellen zu untersuchen. Darüber hinaus lässt sich die Stärke des Signals über die Lichtintensität und die Dauer der Bestrahlung variieren. „Wir können verschiedene Versionen von LINuS sozusagen ,personalisiert‘ an die Bedürfnisse des untersuchten Proteins anpassen“, sagt der Leiter der Studie, Professor Roland Eils, der am Deutschen Krebsforschungszentrum und an der Universität Heidelberg forscht. „Das eröffnet uns eine Vielzahl von denkbaren Anwendungsgebieten.“

Das neue System basiert auf einem lichtempfindlichen Protein, das in Pflanzen an der Bewegung in Richtung des Sonnenlichts beteiligt ist. „Wir haben dieses pflanzliche Protein schrittweise in einen lichtabhängigen Protein-Shuttle-Service umgebaut, der sogar in menschlichen Zellen funktioniert“, sagt Dominik Niopek, der Erstautor der Studie. Das Signal, das den Transport des zugehörigen Proteins in den Zellkern vermittelt, ist im Dunkeln im LINuS-Anhänger (dem umgebauten Pflanzenprotein) „versteckt“ und daher ausgeschaltet. Erst bei Lichteinfall wird es freigelegt und bewirkt den Transport des markierten Proteins vom Zellplasma in den Zellkern. Ist dieses Protein beispielweise ein Transkriptionsfaktor, führt dies zum Anschalten bestimmter Gene und beeinflusst so direkt verschiedene Funktionen der Zelle. Getestet wurde das neue System zunächst mit einem fluoreszenten „Berichterstatter“: so konnten die Heidelberger Forscher die Wanderung des leuchtenden Proteins direkt unter dem Mikroskop beobachten. Die Wissenschaftler bewiesen aber auch, dass sie mit Hilfe von LINuS direkt in grundlegende, zelluläre Funktionen eingreifen können: so konnten sie – nur durch das Einschalten von Licht – bestimmte Gene anschalten und sogar Zellen in die Zellteilung treiben. In Krebszellen verläuft diese Zellteilung häufig schnell und ohne jegliche Kontrolle und führt zu genetischen Defekten, die das Tumorwachstum verstärken oder die Resistenz gegenüber bestimmten Medikamenten fördern. Außerdem sind in Krebszellen genetische Reparaturmechanismen häufig fehl- oder sogar ausgeschaltet. „All diesen Prozessen liegt eine komplexe, in gesunden Zellen wohlkoordinierte Bewegung der beteiligten Signalproteine zugrunde“, erklärt Barbara di Ventura, die die Arbeitsgruppe für Synthetische Biologie in der Abteilung von Roland Eils leitet. „Deren Erforschung steckt derzeit noch in den Kinderschuhen und kann nun mithilfe von LINuS vorangetrieben werden.“

Entscheidend für zukünftige Forschungsansätze sei insbesondere die Möglichkeit, die Aktivität bestimmter Gene räumlich und zeitlich zu kontrollieren, erklärt Dominik Niopek. „Es genügt nicht, ein Protein in einer Krebszelle einfach nur an- oder auszuschalten. Die Bewegung krebsrelevanter Proteine innerhalb der Zelle, wie beispielsweise die des Wächterproteins p53, ist ebenso wichtig. Diese können wir nun mit LINuS erforschen.“

Roland Eils und Barbara Di Ventura arbeiten seit Jahren in der Synthetischen Biologie. Das aufstrebende Forschungsfeld entwickelt Werkzeuge, um Zellen mit vollkommen neuen Eigenschaften auszustatten – und so neue Anwendungsgebiete in medizinischen, biotechnologischen und umweltrelevanten Bereichen zu erschließen. LINuS ist ein neues Werkzeug im Baukasten der Forscher. „Das Feld der Optogenetik, in der man Proteinaktivität mit Licht steuern kann, entwickelt sich zur Zeit rapide, weil Licht ein idealer, gezielter und nahezu nebenwirkungsfreier ,Schalter‘ ist, um Proteine in einzelnen Zellen zu steuern“, sagt Barbara Di Ventura. Im letzten Jahr holte das von Eils, Di Ventura und Niopek betreute studentische Team beim internationalen iGEM-Wettbewerb in Boston den Weltmeistertitel der Synthetischen Biologie nach Heidelberg.

Engineering light-inducible nuclear localization signals for precise spatiotemporal control of protein dynamics in living cells.
Niopek D, Benzinger D, Roensch J, Draebing T, Wehler P, Eils R, Di Ventura B.
Nat Commun. 2014 Jul 14;5:4404. doi: 10.1038/ncomms5404.

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS