Cookie Hinweis

Wir verwenden Cookies, um Ihnen ein optimales Webseiten-Erlebnis zu bieten. Dazu zählen Cookies, die für den Betrieb der Seite notwendig sind, sowie solche, die lediglich zu anonymen Statistikzwecken, für Komforteinstellungen oder zur Anzeige personalisierter Inhalte genutzt werden. Sie können selbst entscheiden, welche Kategorien Sie zulassen möchten. Bitte beachten Sie, dass auf Basis Ihrer Einstellungen womöglich nicht mehr alle Funktionalitäten der Seite zur Verfügung stehen. Weitere Informationen finden Sie in unseren Datenschutzhinweisen .

Essentiell

Diese Cookies sind für die Funktionalität unserer Website erforderlich und können nicht deaktiviert werden.

Name Webedition CMS
Zweck Dieses Cookie wird vom CMS (Content Management System) Webedition für die unverwechselbare Identifizierung eines Anwenders gesetzt. Es bietet dem Anwender bessere Bedienerführung, z.B. Speicherung von Sucheinstellungen oder Formulardaten. Typischerweise wird dieses Cookie beim Schließen des Browsers gelöscht.
Name econda
Zweck Session-Cookie für die Webanalyse Software econda. Diese läuft im Modus „Anonymisiertes Messen“.
Statistik

Diese Cookies helfen uns zu verstehen, wie Besucher mit unserer Webseite interagieren, indem Informationen anonym gesammelt und analysiert werden. Je nach Tool werden ein oder mehrere Cookies des Anbieters gesetzt.

Name econda
Zweck Measure with Visitor Cookie emos_jcvid
Externe Medien

Inhalte von externen Medienplattformen werden standardmäßig blockiert. Wenn Cookies von externen Medien akzeptiert werden, bedarf der Zugriff auf diese Inhalte keiner manuellen Zustimmung mehr.

Name YouTube
Zweck Zeige YouTube Inhalte
Name Twitter
Zweck Twitter Feeds aktivieren

Eingeschmuggelte Therapieresistenz

Nr. 36 | 25.06.2013 | von Koh

Wissenschaftler aus dem Deutschen Krebsforschungszentrum und dem Universitätsklinikum Heidelberg entdeckten eine Ursache für die Therapieresistenz von Hirntumoren. In den Tumor eingewanderte Mikrogliazellen versorgen die Krebszellen mit einer Substanz, die zur Reparatur von DNA-Schäden erforderlich ist. Dadurch entgehen die Zellen dem programmierten Zelltod Apoptose. Ließe sich dieser Resistenzmechanismus blockieren, könnten bösartige Hirntumoren möglicherweise wirkungsvoller behandelt werden.

NAD+ ist ein wichtiger Co-Faktor bei der Reparatur von DNA-Schäden. Bösartige Hirntumoren nutzen alternative Wege, um sich mit ausreichend NAD+ zu versorgen.Bild: Ben Mills, Wikimedia Commons

Gliome sind bösartige Hirntumoren, die aus den Stützzellen des zentralen Nervensystems entstehen, den so genannten Astrozyten. „Bei der Behandlung bösartiger Gliome kombinieren wir Strahlentherapie und das Medikament Temozolomid. Bei einigen Patienten entwickeln die Tumoren jedoch rasch Resistenzen gegen beide Behandlungsverfahren“, sagt der Neuroonkologe Professor Dr. Michael Platten, der eine Kooperationseinheit des Deutschen Krebsforschungszentrums und der Abteilung Neuroonkologie des Universitätsklinikums Heidelberg leitet. „Wir brauchen daher dringend neue Möglichkeiten, diese Erkrankungen wirksamer zu behandeln.“

Chemo- und Strahlentherapien schädigen das Erbgut der Tumorzellen. Die DNA-Defekte lösen wiederum automatisch das Selbstmordprogramm Apoptose aus. Doch Tumorzellen schützen sich mit einem effizienten DNA-Reparatursystem vor den Folgen der Therapie und damit vor dem Zelltod.

Die wichtigsten DNA-Reparaturwerkzeuge der Zelle funktionieren nur dann, wenn das Molekül NAD+ vorhanden ist. Läuft die DNA-Reparatur auf Hochtouren, etwa während einer Strahlentherapie, sind die NAD+-Vorräte einer Krebszelle schnell erschöpft, so dass DNA-Schäden nicht repariert werden und der Zelltod eintritt. Krebsforscher versuchen daher, mit Medikamenten künstlich einen NAD+ Mangel herbeizuführen und so eine Therapieresistenz zu verhindern. Wirkstoffe, die das NAD+-produzierende Enzym hemmen, werden sogar schon in klinischen Studien geprüft.

Jedoch können Zellen NAD+ nicht nur auf direktem Wege herstellen, sondern zusätzlich auf andere Produktionsverfahren ausweichen: Die Substanz Quinolinsäure, die beim Abbau des Eiweißbausteins Tryptophan entsteht, dient Zellen als alternativer Ausgangsstoff für die NAD+-Produktion. Michael Platten und sein Team hatten entdeckt, dass bösartige Gliome große Mengen an Quinolinsäure enthalten. „Wir wollten wissen, ob die Gliome möglicherweise diesen Umweg nutzen, um ausreichend NAD+ zu produzieren und so den Therapien zu entgehen“, sagt Dr. Felix Sahm von der Abteilung Neuropathologie des Universitätsklinikums Heidelberg, der Erstautor der Publikation.

Ist die direkte NAD+-Produktion blockiert, so kurbeln bösartige Gliomzellen die Herstellung eines Enzyms an, das die Quinolinsäure zu NAD+ abbaut. Chemotherapie und Bestrahlung steigern die Menge des „QRPT“ genannten Enzyms im Tumor. Je bösartiger die untersuchten Gliome waren, desto mehr QRPT enthielten sie.

Allerdings, so entdeckten die Forscher, sind die Tumorzellen selbst gar nicht dazu in der Lage, Quinolinsäure zu bilden. Vielmehr wir die Substanz von den zum Immunsystem zählenden Mikroglia-Zellen produziert, die in großer Zahl in Gliome einwandern. Mikroglia-Zellen können bis zu 50 Prozent der Gesamtzellzahl eines Glioms ausmachen.

Nur die Tumorzellen, nicht aber gesunde Astrozyten, enthalten QRPT und können daher Quinolinsäure zu NAD+ abbauen. „Die bösartige Entartung von Astrozyten geht offenbar mit ihrer Fähigkeit einher, sich die Quinolinsäure als alternative Quelle für NAD+ zu erschließen und damit resistent gegen Strahlen- und Chemotherapie zu werden“, sagt Michael Platten. „Ein Zusammenhang zwischen Mikroglia und der Bösartigkeit der Gliome ist schon seit längerem bekannt – jetzt haben wir einen möglichen Grund dafür gefunden“, so der Neuroonkologe. „Das Schlüsselenzym für die alternative Versorgung mit NAD+ ist die QRPT Ein zielgerichteter Wirkstoff gegen dieses Enzym könnte dabei helfen, die Therapieresistenz von Hirntumoren zu unterdrücken. Dann könnten wir mit den bereits heute verfügbaren Behandlungsverfahren möglicherweise mehr gegen bösartige Hirntumoren ausrichten.“

Felix Sahm, Iris Oezen, Christiane A. Opitz, Bernhard Radlwimmer, Andreas von Deimling, Tilman Ahrendt, Seray Adams, Helge B. Bode, Gilles J. Guillemin, Wolfgang Wick und Michael Platten: The Endogenous Tryptophan Metabolite and NAD+ Precursor Quinolinic Acid Confers Resistance of Gliomas to Oxidative Stress. Cancer Research 2013, DOI: 10.1158/0008-5472.CAN-12-3831

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Beim Krebsinformationsdienst (KID) des DKFZ erhalten Betroffene, Interessierte und Fachkreise individuelle Antworten auf alle Fragen zum Thema Krebs.

Um vielversprechende Ansätze aus der Krebsforschung in die Klinik zu übertragen und so die Chancen von Patientinnen und Patienten zu verbessern, betreibt das DKFZ gemeinsam mit exzellenten Universitätskliniken und Forschungseinrichtungen in ganz Deutschland Translationszentren:

  • Nationales Centrum für Tumorerkrankungen (NCT, 6 Standorte)
  • Deutsches Konsortium für Translationale Krebsforschung (DKTK, 8 Standorte)
  • Hopp-Kindertumorzentrum (KiTZ) Heidelberg
  • Helmholtz-Institut für translationale Onkologie (HI-TRON) Mainz – ein Helmholtz-Institut des DKFZ
  • DKFZ-Hector Krebsinstitut an der Universitätsmedizin Mannheim
  • Nationales Krebspräventionszentrum (gemeinsam mit der Deutschen Krebshilfe)
Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben
powered by webEdition CMS